Return to search

Influence of strain rate on oxide fracture

The ability of metals and alloys to form and retain protective oxide scales is crucial to their stability at elevated temperatures for extended times. Hence the identification of factors that promote or limit the integrity of oxides on high temperature materials has been the subject of intensive investigations. In the present study the mechanical properties of this chromium-rich scale on 304 stainless steel foil has been investigated in relation to the deformation rates in the substrate. It was shown that heavy cold working (up to 90%) delays the onset of breakaway oxidation and results in a very adherent scale. The cracking behaviour of the scale was found to be strain rate and temperature dependent under slow strain rate conditions when the substrate deforms by creep. No strain rate dependence was observed over the temperature range 700-900°C when faster strain rates (> 10⁻⁵ sec⁻¹) were applied. The transition between these two responses was found to vary only slightly with temperature between 5.0x10⁻⁵ sec⁻¹ and 7.8x10⁻⁵ sec⁻¹, increasing as the temperature is raised. A new method has been described for determining the fracture behaviour of oxide scale by estimating the composite defect size. From a knowledge of the onset of scale cracking, determined in situ using the acoustic emission technique, it was possible to correlate the measured intercrack spacing with the fracture toughness from which the tensile properties of the scale can be evaluated.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:233269
Date January 1988
CreatorsMahmood, K.
ContributorsHancock, P.
PublisherCranfield University
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://dspace.lib.cranfield.ac.uk/handle/1826/11358

Page generated in 0.0022 seconds