Return to search

Standing Waves Of Spatially Discrete Fitzhugh-nagumo Equations

We study a system of spatially discrete FitzHugh-Nagumo equations, which are nonlinear differential-difference equations on an infinite one-dimensional lattice. These equations are used as a model of impulse propagation in nerve cells. We employ McKean's caricature of the cubic as our nonlinearity, which allows us to reduce the nonlinear problem into a linear inhomogeneous problem. We find exact solutions for standing waves, which are steady states of the system. We derive formulas for all 1-pulse solutions. We determine the range of parameter values that allow for the existence of standing waves. We use numerical methods to demonstrate the stability of our solutions and to investigate the relationship between the existence of standing waves and propagation failure of traveling waves.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-5092
Date01 January 2009
CreatorsSegal, Joseph
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations

Page generated in 0.0052 seconds