A unified theory of star formation remains one of the major unsolved issues in astrophysics. Presented here are the results of multi-molecular lines mapping of the entire giant molecular cloud G333, comprised sites of low- and high-mass star forming regions in various evolution stages of star formation. The result shows the spatial distribution of CS, HCO+, HCN and HNC are similar on large scales, while N2H+ seems to trace preferentially the very densest regions, possibly due to the chemical difference, that N2H+ is sensitive to temperature and readily destroyed by CO. Two analysis methods were used to characterise this large set of data cubes: GAUSSCLUMPS and principal component analysis (PCA). We found the clumps are heavily fragmented with a beam filling factor of ~0.2. We found no correlation between clump radius and line width, contradicts to Larson's Law. Possible explanation is the clumps are fragmented and unresolved with the resolution of Mopra beam, thus the decomposed clump radius is blended and no physical properties can be interpreted. PCA of the velocity dimension found no significant differences among CS, HCO+, HNC and C2H line emissions, suggesting these four molecules are `well-mixed' on large scale, possibly by turbulence. PCA of the integrated emission maps separates molecules into low (13CO and C18O) and high (the rest) density tracers, identifies anti-correlation between HCO+ and N2H+ (due to the depletion of CO). The possibility of removing the scanning patterns of the `on-the-fly' mapping with PCA was also explored. The detection of broad thermal SiO from the massive dense cold core G333.125-0.562, along with other collected transitions, suggesting the core will host massive star formation and the SiO emission arises from shocks associated with an outflow in the cold core. Result of the modelling infall with 3D radiative transfer code using the derived physical parameters have successfully reproduce the line profiles. Recent observation of the 3 and 7 mm continuum emission suggestive of warm dust emission rather than free-free emission from HII, further supports the core is in a very young stage of star formation.
Identifer | oai:union.ndltd.org:ADTP/272591 |
Date | January 2009 |
Creators | Lo, Wing-Chi Nadia , Physics, Faculty of Science, UNSW |
Publisher | Awarded by:University of New South Wales. Physics |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | Copyright Lo Wing-Chi Nadia ., http://unsworks.unsw.edu.au/copyright |
Page generated in 0.0013 seconds