A common interest of scientists in many fields is to understand the relationship between the dynamics of a physical system and the occurrences of discrete events within such physical system. Seismologists study the connection between mechanical vibrations of the Earth and the occurrences of earthquakes so that future earthquakes can be better predicted. Astrophysicists study the association between the oscillating energy of celestial regions and the emission of photons to learn the Universe's various objects and their interactions. Neuroscientists study the link between behavior and the millisecond-timescale spike patterns of neurons to understand higher brain functions.
Such relationships can often be formulated within the framework of state-space models with point process observations. The basic idea is that the dynamics of the physical systems are driven by the dynamics of some stochastic state variables and the discrete events we observe in an interval are noisy observations with distributions determined by the state variables. This thesis proposes several new methodological developments that advance the framework of state-space models with point process observations at the intersection of statistics and neuroscience. In particular, we develop new methods 1) to characterize the rhythmic spiking activity using history-dependent structure, 2) to model population spike activity using marked point process models, 3) to allow for real-time decision making, and 4) to take into account the need for dimensionality reduction for high-dimensional state and observation processes.
We applied these methods to a novel problem of tracking rhythmic dynamics in the spiking of neurons in the subthalamic nucleus of Parkinson's patients with the goal of optimizing placement of deep brain stimulation electrodes. We developed a decoding algorithm that can make decision in real-time (for example, to stimulate the neurons or not) based on various sources of information present in population spiking data. Lastly, we proposed a general three-step paradigm that allows us to relate behavioral outcomes of various tasks to simultaneously recorded neural activity across multiple brain areas, which is a step towards closed-loop therapies for psychological diseases using real-time neural stimulation. These methods are suitable for real-time implementation for content-based feedback experiments.
Identifer | oai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/17719 |
Date | 12 August 2016 |
Creators | Deng, Xinyi |
Source Sets | Boston University |
Language | en_US |
Detected Language | English |
Type | Thesis/Dissertation |
Page generated in 0.002 seconds