The purpose of this study is to determine the most suitable remediation technique via geotechnical assessment of the landslide that occurred during the construction of Bursa-inegö / l-Bozü / yü / k Road at KM: 72+000-72+200 in an ancient landslide area.
For this purpose, the geotechnical parameters of the mobilized soil along the slide surface was determined by back analyses of the landslide at four profiles by utilizing the Slope/W software. The landslide was then modeled using coupled analyses (with the Seep/W and Slope/W softwares) along the most representative profile of the study area by considering the landslide mechanism, the parameters
determined from the geotechnical investigations, the size of the landslide and the location of the slip circle. In addition, since the study area is located in a second degree earthquake hazard region, pseudo-static stability analyses using the Slope/W software were performed incorporating the earthquake potential. The most suitable slope remediation technique was determined to be a combination of surface and subsurface drainage, application of rock buttress at the toe of the slide and unloading of the landslide material.
A static and dynamic analyses of the landslide was also performed through utilizing finite element analyses. The static analyses were calibrated using the inclinometer readings in the field. After obtaining a good agreement with the inclinometer readings and finite element analyses results, the dynamic analyses were performed using acceleration time histories, which were determined considering the seismic
characteristics of the study area.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/3/12611097/index.pdf |
Date | 01 September 2009 |
Creators | Oztepe, Damla Gaye |
Contributors | Akgun, Haluk |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | M.S. Thesis |
Format | text/pdf |
Rights | Access forbidden for 1 year |
Page generated in 0.0019 seconds