Return to search

Generalization Error Bounds for Time Series

In this thesis, I derive generalization error bounds — bounds on the expected inaccuracy of the predictions — for time series forecasting models. These bounds allow forecasters to select among competing models, and to declare that, with high probability, their chosen model will perform well — without making strong assumptions about the data generating process or appealing to asymptotic theory. Expanding upon results from statistical learning theory, I demonstrate how these techniques can help time series forecasters to choose models which behave well under uncertainty. I also show how to estimate the β-mixing coefficients for dependent data so that my results can be used empirically. I use the bound explicitly to evaluate different predictive models for the volatility of IBM stock and for a standard set of macroeconomic variables. Taken together my results show how to control the generalization error of time series models with fixed or growing memory.

Identiferoai:union.ndltd.org:cmu.edu/oai:repository.cmu.edu:dissertations-1188
Date06 April 2012
CreatorsMcDonald, Daniel J.
PublisherResearch Showcase @ CMU
Source SetsCarnegie Mellon University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceDissertations

Page generated in 0.0018 seconds