Return to search

Biomarker discovery and statistical modeling with applications in childhood epilepsy and Angelman syndrome

Biomarker discovery and statistical modeling reveals the brain activity that supports brain function and dysfunction. Detecting abnormal brain activity is critical for developing biomarkers of disease, elucidating disease mechanisms and evolution, and ultimately improving disease course. In my thesis, we develop statistical methodology to characterize neural activity in disease from noisy electrophysiological recordings.

First, we develop a modification of a classic statistical modeling approach - multivariate Granger causality - to infer coordinated activity between brain regions. Assuming the signaling dependencies vary smoothly, we propose to write the history terms in autoregressive models of the signals using a lower dimensional spline basis. This procedure requires fewer parameters than the standard approach, thus increasing the statistical power. we show that this procedure accurately estimates brain dynamics in simulations and examples of physiological recordings from a patient with pharmacoresistant epilepsy. This work provides a statistical framework to understand alternations in coordinated brain activity in disease.

Second, we demonstrate that sleep spindles, thalamically-driven neural rhythms (9-15 Hz) associated with sleep-dependent learning, are a reliable biomarker for Rolandic epilepsy. Rolandic epilepsy is the most common form of childhood epilepsy and characterized by nocturnal focal epileptic discharges as well as neurocognitive deficits. We show that sleep spindle rate is reduced regionally across cortex and correlated with poor cognitive performance in epilepsy. These results provide evidence for a regional disruption to the thalamocortical circuit in Rolandic epilepsy, and a potential mechanistic explanation for the cognitive deficits observed.

Finally, we develop a procedure to utilize delta rhythms (2-4 Hz), a sensitive biomarker for Angelman syndrome, as a non-invasive measure of treatment efficacy in clinical trials. Angelman syndrome is a rare neurodevelopmental disorder caused by reduced expression of the UBE3A protein. Many disease-modifying treatments are being developed to reinstate UBE3A expression. To aid in clinical trials, we propose a procedure that detects therapeutic improvements in delta power outside of the natural variability over age by developing a longitudinal natural history model of delta power.

These results demonstrate the utility of biomarker discovery and statistical modeling for elucidating disease course and mechanisms with the long-term goal of improving patient outcomes.

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/43812
Date04 February 2022
CreatorsSpencer, Elizabeth Rose Stevens
ContributorsKramer, Mark A.
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation

Page generated in 0.002 seconds