Yes / This paper investigates the feasibility of using artificial neural networks (NNs) to predict the shear capacity of concrete members reinforced longitudinally with fibre reinforced polymer (FRP) bars, and without any shear reinforcement. An experimental database of 138 test specimens failed in shear is created and used to train and test NNs as well as to assess the accuracy of three existing shear design methods. The created NN predicted to a high level of accuracy the shear capacity of FRP reinforced concrete members.
Garson index was employed to identify the relative importance of the influencing parameters on the shear capacity based on the trained NNs weightings. A parametric analysis was also conducted using the trained NN to establish the trend of the main influencing variables on the shear capacity. Many of the assumptions made by the shear design methods are predicted by the NN developed; however, few are inconsistent with the NN predictions.
Identifer | oai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/7515 |
Date | 10 April 2012 |
Creators | Bashir, Rizwan, Ashour, Ashraf |
Source Sets | Bradford Scholars |
Language | English |
Detected Language | English |
Type | Article, Accepted manuscript |
Rights | © 2012 Elsevier. Reproduced in accordance with the publisher's self-archiving policy., Unspecified |
Page generated in 0.0021 seconds