Cette thèse est divisée en cinq chapitres auxquels s'ajoutent une introduction et une conclusion. Dans le premier chapitre, nous rappelons quelques notions de base sur la théorie des valeurs extrêmes. Dans le deuxième chapitre, nous considérons un processus statistique dépendant d'un paramétre continu tau et dont chaque marge peut être considérée comme un estimateur de Hill généralis.. Ce processus statistique permet de discriminer entièrement les domaines d'attraction des valeurs extrêmes. La normalité asymptotique de ce processus statistiquea été seulement donnée pour tau > 1/2. Nous complétons cette étude pour 0 < tau< 1/2, en donnant une approximation des domaines de Gumbel et de Fréchet. Des études de simulations effectuées avec le logiciel " R ", permettent de montrer la performance de ces estimateurs. Comme illustration, nous proposons une application de notre méthodologie aux données hydrauliques. Dans le troisième chapitre, nous étendons l'étude du processus statistique précédent dans un cadre fonctionnel. Nous proposons donc un processus stochastique dépendant d'une fonctionnelle positive pour obtenir une grande classe d'estimateurs de l'indice des valeurs extrêmes dont chaque estimateur est une marge d'un seul processus stochastique. L'étude théorique de ces processus stochastiques que nous avions menée, est basée sur la théorie moderne de convergence vague fonctionnelle. Cette dernière permet de gérer des estimateurs plus complexes sous forme de processus stochastiques. Nous donnons les distributions asymptotiques fonctionnelles de ces processus et nous montrons que pour certaines classes de fonctions, nous avons un comportement asymptotique non Gaussien et qui sera entièrement caractérisé. Dans le quatrième chapitre, on s'intéresse à l'estimation du paramètre du second ordre. Notons que ce paramètre joue un rôle très important dans le choix adaptatif du nombre optimal de valeurs extrêmes utilisé lors de l'estimation de l'indice des valeurs extrêmes. L'estimation de ce paramètre est également utilisée pour la réduction du biais des estimateurs de l'indice de queue et a reçu une grande attention dans la littérature des valeurs extrêmes .Nous proposons une simple et générale approche pour estimer le paramètre du second ordre, permettant de regrouper un grand nombre d'estimateurs. Il est montré que les estimateurs cités précedemment peuvent être vus comme des cas particuliers de notre approche. Nous tirons également parti de notre formalisme pour proposer de nouveaux estimateurs asymptotiquement Gaussiens du paramètre du second ordre. Finalement, certains estimateurs sont comparés tant du point de vue asymptotique que performance sur des échantillons de tailles finies. Comme illustration, nous proposons une application sur des données d'assurance. Dans le dernier chapitre, on s'intéresse aux mesures de risque actuariel pour des phénomènes capables d'engendrer des pertes financières très importantes (ou phenomènes extrêmes c'est-à-dire à des risques dont on ne sait pas si le système d'assurance sera capable de les supporte). De nombreuses mesures de risque ou principes de calcul de la prime ont été proposés dans la littérature actuarielle. Nous nous concentrons sur la prime de risque-ajustée. Jones et Zitikis (2003) ont donné une estimation de cette dernière basée sur la distribution empirique et ont établi sa normalité asymptotique sous certaines conditions appropriées, et qui ne sont pas souvent remplies dans le cas des distributions à queues lourdes. Ainsi, nous regardons ce cadre là et nous considérons une famille d'estimateurs de la prime de risque-ajustée basée sur l'approche de la théorie des valeurs extrêmes. Nous établissons leur normalité asymptotique et nous proposons également une approche de réduction de biais pour ces estimateurs. Des études de simulation permettent d'apprécier la qualité de nos estimateurs. Comme illustration, nous proposons une application sur des données d'assurance.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-01069382 |
Date | 05 June 2013 |
Creators | Deme, El Hadji |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0029 seconds