In this work local behavior for solutions to the inhomogeneous p-Laplace in divergence form and its parabolic version are studied. It is parabolic and non-linear generalization of the Calderon-Zygmund theory for the Laplace operator.
I.e. the borderline case BMO is studied. The two main results are local BMO and Hoelder estimates for the inhomogenious p-Laplace and the parabolic p-Laplace system. An adaption of some estimates to fluid mechanics, namely on the p-Stokes equation are also proven. The p-Stokes system is a very important physical model for so-called non Newtonian fluids (e.g. blood). For this system BMO and Hoelder estimates are proven in the stationary 2-dimensional case.
Identifer | oai:union.ndltd.org:MUENCHEN/oai:edoc.ub.uni-muenchen.de:16209 |
Date | 14 October 2013 |
Creators | Schwarzacher, Sebastian |
Publisher | Ludwig-Maximilians-Universität München |
Source Sets | Digitale Hochschulschriften der LMU |
Detected Language | English |
Type | Dissertation, NonPeerReviewed |
Format | application/pdf |
Relation | http://edoc.ub.uni-muenchen.de/16209/ |
Page generated in 0.0593 seconds