IT infrastructures can be quantitatively described by attributes, like performance or energy efficiency. Ever-changing user demands and economic attempts require varying short-term and long-term decisions regarding the alignment of an IT infrastructure and particularly its attributes to this dynamic surrounding. Potentially conflicting attribute goals and the central role of IT infrastructures presuppose decision making based upon reasoning, the process of forming inferences from facts or premises. The focus on specific IT infrastructure parts or a fixed (small) attribute set disqualify existing reasoning approaches for this intent, as they neither cover the (complex) interplay of all IT infrastructure components simultaneously, nor do they address inter- and intra-attribute correlations sufficiently.
This thesis presents a process model for the integrated reasoning about quantitative IT infrastructure attributes. The process model’s main idea is to formalize the compilation of an individual reasoning function, a mathematical mapping of parametric influencing factors and modifications on an attribute vector. Compilation bases upon model integration to benefit from the multitude of existing specialized, elaborated, and well-established attribute models. The achieved reasoning function consumes an individual tuple of IT infrastructure components, attributes, and external influencing factors to expose a broad applicability. The process model formalizes a reasoning intent in three phases. First, reasoning goals and parameters are collected in a reasoning suite, and formalized in a reasoning function skeleton. Second, the skeleton is iteratively refined, guided by the reasoning suite. Third, the achieved reasoning function is employed for What-if analyses, optimization, or descriptive statistics to conduct the concrete reasoning. The process model provides five template classes that collectively formalize all phases in order to foster reproducibility and to reduce error-proneness.
Process model validation is threefold. A controlled experiment reasons about a Raspberry Pi cluster’s performance and energy efficiency to illustrate feasibility. Besides, a requirements analysis on a world-class supercomputer and on the European-wide execution of hydro meteorology simulations as well as a related work examination disclose the process model’s level of innovation. Potential future work employs prepared automation capabilities, integrates human factors, and uses reasoning results for the automatic generation of modification recommendations. / IT-Infrastrukturen können mit Attributen, wie Leistung und Energieeffizienz, quantitativ beschrieben werden. Nutzungsbedarfsänderungen und ökonomische Bestrebungen erfordern Kurz- und Langfristentscheidungen zur Anpassung einer IT-Infrastruktur und insbesondere ihre Attribute an dieses dynamische Umfeld. Potentielle Attribut-Zielkonflikte sowie die zentrale Rolle von IT-Infrastrukturen erfordern eine Entscheidungsfindung mittels Reasoning, einem Prozess, der Rückschlüsse (rein) aus Fakten und Prämissen zieht. Die Fokussierung auf spezifische Teile einer IT-Infrastruktur sowie die Beschränkung auf (sehr) wenige Attribute disqualifizieren bestehende Reasoning-Ansätze für dieses Vorhaben, da sie weder das komplexe Zusammenspiel von IT-Infrastruktur-Komponenten, noch Abhängigkeiten zwischen und innerhalb einzelner Attribute ausreichend berücksichtigen können.
Diese Arbeit präsentiert ein Prozessmodell für das integrierte Reasoning über quantitative IT-Infrastruktur-Attribute. Die grundlegende Idee des Prozessmodells ist die Herleitung einer individuellen Reasoning-Funktion, einer mathematischen Abbildung von Einfluss- und Modifikationsparametern auf einen Attributvektor. Die Herleitung basiert auf der Integration bestehender (Attribut-)Modelle, um von deren Spezialisierung, Reife und Verbreitung profitieren zu können. Die erzielte Reasoning-Funktion verarbeitet ein individuelles Tupel aus IT-Infrastruktur-Komponenten, Attributen und externen Einflussfaktoren, um eine breite Anwendbarkeit zu gewährleisten. Das Prozessmodell formalisiert ein Reasoning-Vorhaben in drei Phasen. Zunächst werden die Reasoning-Ziele und -Parameter in einer Reasoning-Suite gesammelt und in einem Reasoning-Funktions-Gerüst formalisiert. Anschließend wird das Gerüst entsprechend den Vorgaben der Reasoning-Suite iterativ verfeinert. Abschließend wird die hergeleitete Reasoning-Funktion verwendet, um mittels “What-if”–Analysen, Optimierungsverfahren oder deskriptiver Statistik das Reasoning durchzuführen. Das Prozessmodell enthält fünf Template-Klassen, die den Prozess formalisieren, um Reproduzierbarkeit zu gewährleisten und Fehleranfälligkeit zu reduzieren.
Das Prozessmodell wird auf drei Arten validiert. Ein kontrolliertes Experiment zeigt die Durchführbarkeit des Prozessmodells anhand des Reasonings zur Leistung und Energieeffizienz eines Raspberry Pi Clusters. Eine Anforderungsanalyse an einem Superrechner und an der europaweiten Ausführung von Hydro-Meteorologie-Modellen erläutert gemeinsam mit der Betrachtung verwandter Arbeiten den Innovationsgrad des Prozessmodells. Potentielle Erweiterungen nutzen die vorbereiteten Automatisierungsansätze, integrieren menschliche Faktoren, und generieren Modifikationsempfehlungen basierend auf Reasoning-Ergebnissen.
Identifer | oai:union.ndltd.org:MUENCHEN/oai:edoc.ub.uni-muenchen.de:18094 |
Date | 15 December 2014 |
Creators | Straube, Christian |
Publisher | Ludwig-Maximilians-Universität München |
Source Sets | Digitale Hochschulschriften der LMU |
Detected Language | English |
Type | Dissertation, NonPeerReviewed |
Format | application/pdf |
Relation | http://edoc.ub.uni-muenchen.de/18094/ |
Page generated in 0.0023 seconds