Return to search

Formation and Quantification of Corrosion Deposits in the Power Industry

The presence of deposits on the secondary side of pressurized water reactor (PWR) steam generator systems is one of the main contributors to the high maintenance costs of these generators. Formation and transport of corrosion products formed due to the presence of impurities, metals and metallic oxides in the secondary side of the steam generator units result in formation of deposits. This research deals with understanding the deposit formation and characterization of deposits by studying the samples collected from different units in secondary side system at Comanche Peak Steam Electric Station (CPSES). Fourier transform infrared spectrophotometry (FTIR), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) have been used for studying the phases, morphologies and compositions of the iron oxides formed at Unit 1 and Unit 2 of secondary side of steamgenerator systems. Hematite and magnetite were found to be the dominant phases of iron oxides present in the units. Fe, Cr, O, Ni, Si, Cl and Cu were found in samples collected from both the units. A qualitative method was developed to differentiate iron oxides using laser induced breakdown spectroscopy (LIBS) based on temporal response of iron oxides to a high power laser beam. A quantitative FTIR technique was developed to identify and quantify iron oxides present in the different components of the secondary side of the steam generator of CPSES. Amines are used in water treatment to control corrosion and fouling in pressurized water reactors. CPSES presently uses an amine combination of dimethylamine (DMA), hydrazine and morpholine to control the water chemistry. Along with the abovementioned amines, this study also focuses on corrosion inhibition mechanismsof a new amine DBU (1, 8-diazabicyclo [5.4.0] undec-7-ene). Electrochemical impedance spectroscopy and polarization curves were used to study the interaction mechanism between DBU solution and inconel alloys 600 and 690 at steamgenerator operating temperatures and pressures. Of all the amines used in this study (DMA, DBU, ETA, and morpholine), DMA was more effective at keeping the passive film formed on the alloy 600 surface from failing at both ambient and high temperatures. Morpholine was found result in higher corrosion resistance compared to the other amines in case of alloy 690.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc3635
Date05 1900
CreatorsNamduri, Haritha
ContributorsNasrazadani, Seifollah, Kaufman, Michael, Gorman, Brian P., Kelber, Jeffry A.
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, Copyright, Namduri, Haritha, Copyright is held by the author, unless otherwise noted. All rights reserved.

Page generated in 0.0026 seconds