Return to search

Performance-based assessments of buckling-restrained braced steel frames retrofitted by self-centering shape memory alloy braces

Concrete-filled buckling restrained braces (BRBs) was first developed in 1988 in Tokyo, Japan, to prevent the steel plates in the core portion from buckling, leading the steel core to exhibiting a more stable and fully hysteretic loop than conventional steel braces. However, past studies have shown that buckling restrained braced frames (BRBFs) have a large residual deformation after a median or high seismic event due to steel’s residual strain. In order to address this issue, innovative self-centering SMA braces are proposed and installed in the originally unbraced bays in existing BRBFs to become a hybrid frame system where the existing steel BRBs dissipate energy induced by external forces and the newly added self-centering SMA braces restore the building configuration after the steel BRBs yield. A case study of conventional three-story BRBF retrofitted by the proposed self-centering SMA braces is carried out to develop systematic retrofit strategies, to investigate the structural behavior, and to probabilistically assess their seismic performance in terms of interstory drifts, residual drifts, and brace deformation, as compared to the original steel BRB frames. Finally, the developed brace component fragility curves and system fragility curves will be further used for the assessment of downtime and repair cost.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/49040
Date20 September 2013
CreatorsPham, Huy
ContributorsWhite, Donald, DesRoches, Reginald, Yang, C. S. (Walter)
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0019 seconds