Return to search

Chemical treatment of corroding steel reinforcement after removal of chloride contaminated concrete

The increasing use of deicing salts has caused the accelerated deterioration of bridge decks due to cracking and spalling from chloride induced corrosion of steel reinforcement. One method being considered as a possible corrosion abatement measure is the removal of chloride contaminated concrete and the chemical treatment of the partially exposed rebar through ponding and/or placement of chemically treated mortar.

Reinforced concrete specimens were cast and subjected to repeated exposure to NaCl solution. Half-cell potential, corrosion rate, and chloride ion concentration measurements were conducted until the indication of active reinforcement corrosion. Chloride contaminated concrete was removed to the rebar level through a grooving process. The grooves were chemically treated through solution pondings and backfilling with treated mortar. Seventeen treatments and combination of treatments were evaluated including corrosion inhibitors, polymer sealers, and a possible chloride ion scavenging mineral. The treatment effects were monitored using half-cell potential and corrosion rate measurements. In addition, mortar cubes were cast containing various treatment concentrations and were subsequently tested for compressive strength and change in resistivity over time.

Based on the electrochemical and mortar cube measurements, DCI (calcium nitrite) when applied as a ponding and mortar treatment, was determined most effective in abating corrosion after concrete removal. In addition, Alox 901, Cortec 1337, Cortec 1609, sodium tetraborate, and Zinc borate were also found effective in mitigating rebar corrosion after concrete removal; however, both the borate compounds cause set retardation of portland cement. These chemicals were recommended as candidate treatments for further evaluation in both large-scale and field experimentation. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/44282
Date18 August 2009
CreatorsCollins, William D.
ContributorsMaterials Engineering, Weyers, Richard E., Gordon, Ronald S., Brown, Jesse J. Jr.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis, Text
Formatxiii, 167 leaves, BTD, application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationOCLC# 24346651, LD5655.V855_1991.C655.pdf

Page generated in 0.0017 seconds