This thesis describes part of the work associated with Project 0-6719 sponsored by the Texas Department of Transportation (TxDOT). The primary objective of the project is to examine the feasibility of strengthening older continuous multi-span steel girder bridges through the use of post-installed shear connectors. Bridges potentially eligible for retrofit have noncomposite floor systems, where the concrete slab is not attached to the steel girders with shear connectors. Many of these bridges were designed in the 1950's and 1960's for loads smaller than the standard design loads used today. A secondary objective of the project, and the main focus of this thesis, is to examine the design of post-installed shear connectors for fatigue. Of particular interest in this study is the adhesive anchor, given its convenient installation procedure but relatively poor fatigue performance in previous tests. The objectives of this thesis were to quantify the fatigue strength of the adhesive anchor, as well as quantify the shear force and slip demands on adhesive anchors in realistic bridge conditions. In regards to the first objective, twenty-six direct shear fatigue tests were performed on adhesive anchors. Each test was conducted on a single adhesive anchor in order to capture its individual cyclic load-slip behavior. Results indicate that adhesive anchors have considerably higher fatigue strength than conventional welded shear studs, making partial composite design feasible in the strengthening of older steel bridges. In regards to the second objective, analytical and computational studies were conducted on composite beams with adhesive anchors. Results show that the shear force and slip demands are typically smaller than the endurance limits determined from direct-shear testing. This suggests that fatigue failure of adhesive anchors under service loads may not be a primary concern. Based on the results, preliminary recommendations for the design of adhesive anchors for fatigue are provided. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/22347 |
Date | 21 November 2013 |
Creators | Patel, Hemal Vinod |
Source Sets | University of Texas |
Language | en_US |
Detected Language | English |
Format | application/pdf |
Page generated in 0.0016 seconds