Transformation Induced Plasticity (TRIP) steels have both high strength and high ductility. Retained austenite in the microstructure, upon straining, transforms to martensite and this absorbs energy and improves the work hardening of the steel, giving improved elongation. The transformation can be either stress-assisted or strain-induced and the initiation and the mechanism depend on the composition of, the size and shape of, and the phases surrounding, the austenite grains. It is important to understand the relationship between these variables and the properties of the TRIP steel.
The aim of this work was to determine how the microstructure of the TRIP steel affects the transformation. Four experimental microstructures were developed, containing austenite grains with different sizes, shapes, and surrounding phases. The Fine microstructure had thin elongated austenite laths between fine bainitic ferrite laths, the Coarse microstructure had elongated austenite grains between coarser bainitic ferrite laths, the Equiaxed microstructure had equiaxed austenite grains in a matrix of equiaxed ferrite and the Acicular microstructure had elongated austenite grains surrounded by recovered ferrite laths.
Tensile tests were performed and detailed characterization, using neutron diffraction, was done of samples with the four microstructures. The variation in the amount of austenite during deformation was measured. The tensile tests revealed that the microstructures had different mechanical properties and different transformation behaviours. Fine had the lowest elongation and the highest strength. Acicular and Equiaxed had good elongation but lower strength. Coarse had intermediate strength and Equiaxed had sustained work hardening.
The transformation in Fine and Coarse was minimal. Coarse had some slow, steady transformation, but Fine may have had none. The transformation in Equiaxed was larger. It started quickly and then slowed at higher strains. The austenite in Acicular transformed steadily. The predominant mechanism of transformation was stress-assisted transformation, with strain-induced transformation occurring only in Equiaxed.
The results of this work showed that the influence of the surrounding phases on the stability of the austenite is significant. The differences in the transformation behaviour of the four microstructures seemed to be due more to the surrounding phases than the grain size or the composition, although both these factors also played a role. / Thesis (Ph.D, Mechanical and Materials Engineering) -- Queen's University, 2007-12-14 13:35:07.248
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OKQ.1974/960 |
Date | 03 January 2008 |
Creators | Mark, Alison Fiona Lockie |
Contributors | Queen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.)) |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English, English |
Detected Language | English |
Type | Thesis |
Format | 127686542 bytes, application/pdf |
Rights | This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner. |
Relation | Canadian theses |
Page generated in 0.0018 seconds