In this thesis we present the Stefan problem with two boundary conditions, one constant and one time-dependent. This problem is a classic example of a free boundary problem in partial differential equations, with a free boundary moving in time. Some properties are being proved for the one-dimensional case and the important Stefan condition is also derived. The importance of the maximum principle, and the existence of a unique solution are being discussed. To numerically solve this problem, an analysis when the time t goes to zero is being done. The approximative solutions are shown graphically with proper error estimates.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-80215 |
Date | January 2013 |
Creators | Jonsson, Tobias |
Publisher | Umeå universitet, Institutionen för matematik och matematisk statistik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0018 seconds