The subject of this thesis is to study approximation algorithms for some network design problems in face of uncertainty. We consider two widely studied models of handling uncertainties - Robust Optimization and Stochastic Optimization. We study a robust version of the well studied Uncapacitated Facility Location Problem (UFLP). In this version, once the set of facilities to be opened is decided, an adversary may close at most β facilities. The clients must then be assigned to the remaining open facilities. The performance of a solution is measured by the worst possible set of facilities that the adversary may close. We introduce a novel LP for the problem, and provide an LP rounding algorithm when all facilities have same opening costs. We also study the 2-stage Stochastic version of the Steiner Tree Problem. In this version, the set of terminals to be covered is not known in advance. Instead, a probability distribution over the possible sets of terminals is known. One is allowed to build a partial solution in the first stage a low cost, and when the exact scenario to be covered becomes known in the second stage, one is allowed to extend the solution by building a recourse network, albeit at higher cost. The aim is to construct a solution of low cost in expectation. We provide an LP rounding algorithm for this problem that beats the current best known LP rounding based approximation algorithm.
Identifer | oai:union.ndltd.org:WATERLOO/oai:uwspace.uwaterloo.ca:10012/6140 |
Date | January 2011 |
Creators | Gupta, Shubham |
Source Sets | University of Waterloo Electronic Theses Repository |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Page generated in 0.0019 seconds