Auf der Sonne sind viele Phänomene zu sehen die mit der solaren magnetischen Aktivität zusammenhängen. Das dafür zuständige Magnetfeld wird durch einen Dynamo erzeugt, der sich vermutlich am Boden der Konvektionszone in der sogenannten Tachocline befindet. Angetrieben wird der Dynamo teils von der differenziellen Rotation, teils von den magnetischen Turbulenzen in der Konvektionszone. Die differentielle Rotation kann an der Sonnenoberfläche durch beobachten der Sonnenfleckbewegungen gemessen werden.<br>Um einen größeren Parameterraum zum Testen von Dynamotheorien zu erhalten, kann man diese Messungen auch auf andere Sterne ausdehnen. Das primäre Problem dabei ist, dass die Oberflächen von Sternen nicht direkt beobachtet werden können. Indirekt kann man dies jedoch mit Hilfe der Doppler-imaging Methode erreichen, die die Doppler-Verbreitung der Spektrallinien von schnell rotierenden Sternen benützt. Um jedoch ein Bild der Sternoberfläche zu erhalten, bedarf es vieler hochaufgelöster spektroskopischer Beobachtungen, die gleichmäßig über eine Sternrotation verteilt sein müssen. Für Sterne mit langen Rotationsperioden sind diese Beobachtungen nur schwierig durchzuführen. Das neue robotische Observatorium STELLA adressiert dieses Problem und bietet eine auf Dopplerimaging abgestimmte Ablaufplanung der Beobachtungen an. Dies wird solche Beobachtungen nicht nur leichter durchführbar machen, sondern auch effektiver gestalten.<br>Als Vorschau welche Ergebnisse mit STELLA erwartet werden können dient eine Studie an sieben Sternen die allesamt eine lange (zwischen sieben und 25 Tagen) Rotationsperiode haben. Alle Sterne zeigen differentielle Rotation, allerdings sind die Messfehler aufgrund der nicht zufriedenstellenden Datenqualität von gleicher Größenordnung wie die Ergebnisse, ein Problem das bei STELLA nicht auftreten wird. Um die Konsistenz der Ergebnisse zu prüfen wurde wenn möglich sowohl eine Kreuzkorrelationsanalyse als auch die sheared-image Methode angewandt. Vier von diesen sieben Sternen weisen eine differentielle Rotation in umgekehrter Richtung auf als auf der Sonne zu sehen ist. Die restlichen drei Sterne weisen schwache, aber in der Richtung sonnenähnliche differentielle Rotation auf.<br>Abschließend werden diese neuen Messungen mit bereits publizierten Werten kombiniert, und die so erhaltenen Daten auf Korrelationen zwischen differentieller Rotation, Rotationsperiode, Evolutionsstaus, Spektraltyp und Vorhandensein eines Doppelsterns überprüft. Alle Sterne zusammen zeigen eine signifikante Korrelation zwischen dem Betrag der differenziellen Rotation und der Rotationsperiode. Unterscheidet man zwischen den Richtungen der differentiellen Rotation, so bleibt nur eine Korrelation der Sterne mit antisolarem Verhalten. Darüberhinaus zeigt sich auch, dass Doppelsterne schwächer differentiell rotieren. / The sun shows a wide variety of magnetic-activity related phenomena. The magnetic field responsible for this is generated by a dynamo process which is believed to operate in the tachocline, which is located at the bottom of the convection zone. This dynamo is driven in part by differential rotation and in part by magnetic turbulences in the convection zone. The surface differential rotation, one key ingredient of dynamo theory, can be measured by tracing sunspot positions.<br>To extend the parameter space for dynamo theories, one can extend these measurements to other stars than the sun. The primary obstacle in this endeavor is the lack of resolved surface images on other stars. This can be overcome by the Doppler imaging technique, which uses the rotation-induced Doppler-broadening of spectral lines to compute the surface distribution of a physical parameter like temperature. To obtain the surface image of a star, high-resolution spectroscopic observations, evenly distributed over one stellar rotation period are needed. This turns out to be quite complicated for long period stars. The upcoming robotic observatory STELLA addresses this problem with a dedicated scheduling routine, which is tailored for Doppler imaging targets. This will make observations for Doppler imaging not only easier, but also more efficient.<br>As a preview of what can be done with STELLA, we present results of a Doppler imaging study of seven stars, all of which show evidence for differential rotation, but unfortunately the errors are of the same order of magnitude as the measurements due to unsatisfactory data quality, something that will not happen on STELLA. Both, cross-correlation analysis and the sheared image technique where used to double check the results if possible. For four of these stars, weak anti-solar differential rotation was found in a sense that the pole rotates faster than the equator, for the other three stars weak differential rotation in the same direction as on the sun was found.<br>Finally, these new measurements along with other published measurements of differential rotation using Doppler imaging, were analyzed for correlations with stellar evolution, binarity, and rotation period. The total sample of stars show a significant correlation with rotation period, but if separated into antisolar and solar type behavior, only the subsample showing anti-solar differential rotation shows this correlation. Additionally, there is evidence for binary stars showing less differential rotation as single stars, as is suggested by theory. All other parameter combinations fail to deliver any results due to the still small sample of stars available.
Identifer | oai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:208 |
Date | January 2004 |
Creators | Weber, Michael |
Publisher | Universität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Physik und Astronomie |
Source Sets | Potsdam University |
Language | English |
Detected Language | English |
Type | Text.Thesis.Doctoral |
Format | application/pdf |
Rights | http://opus.kobv.de/ubp/doku/urheberrecht.php |
Page generated in 0.003 seconds