Tolerance-based stem cell transplantation using sub-lethal conditioning is being considered for the treatment of human disease, but safety and efficacy remain to be established. In order to study these two issues, we first established that mouse bone marrow recipients treated with sub-lethal irradiation plus transient blockade of the CD40-CD154 costimulatory pathway develop permanent hematopoietic chimerism across allogeneic barriers. Our conditioning regimen of 6 Gy irradiation, a short course of anti-CD154 mAb and 25 million fully allogeneic BALB/c bone marrow cells consistently produced long-term, stable, and multilineage chimerism in C57BL/6 recipients. Furthermore, chimeric mice displayed donor-specific transplantation tolerance, as BALB/c skin allografts were permanently accepted while third-party CBA/JCr skin allografts were promptly rejected. We next determined both the safety and efficacy of this protocol by infecting chimeric mice with lymphocytic choriomeningitis virus (LCMV) either at the time of transplantation or at several time points afterwards. Infection with LCMV at the time of transplantation prevented engraftment of allogeneic, but not syngeneic, bone marrow in similarly treated mice. Surprisingly, infected allograft recipients also failed to clear the virus and died. Post-mortem study revealed hypoplastic bone marrow and spleens. Hypoplasia and death in these mice required the combination of 6 Gy irradiation, LCMV infection on the day of transplantation, and an allogeneic bone marrow transplant but did not require the presence of anti-CDl54 mAb. Allochimeric mice infected with LCMV 15 days after transplantation were able to survive and maintain their bone marrow graft, indicating that the deleterious effects of LCMV infection on host and graft survival are confined to a narrow window of time during the tolerization and transplantation process. The final section of this thesis studied the mechanisms of graft rejection and death in sublethally irradiated recipients of allogeneic bone marrow and infection with LCMV at the time of bone marrow transplantation. Infection of interferon-α/β receptor knockout mice at the time of transplantation prevented the engraftment of allogeneic bone marrow, but the mice survived. Therefore, IFN-αβ is involved in the development of marrow hypoplasia and death, whereas a second mechanism is involved in blocking the development of chimerism in these mice. Through the use of depleting mAb's and knockout mice we demonstrate that three types of recipients survived and became chimeric after being given sublethal irradiation, anti-CD154 mAb, an allogeneic bone marrow transplant and a day 0 LCMV infection: mice depleted of CD8+ T cells, CD8 knockout mice, and TCR-αβ knockout mice. Our data indicate that the mediator of bone marrow allograft destruction in LCMV-infected mice treated with costimulatory blockade is a radioresistant CD8+ NK1.1- TCRαβ+ T cell. We conclude that a non-cytopathic viral infection at the time of transplantation can prevent engraftment of allogeneic bone marrow and result in the death of sub-lethally irradiated mice treated with costimulation blockade. The abrogation of allogeneic bone marrow engraftment is mediated by a population of CD8+ NK1.1- TCRαβ+ T cells and the mediator of hypoplasia and death is viral induction of IFN-αβ.
Identifer | oai:union.ndltd.org:umassmed.edu/oai:escholarship.umassmed.edu:gsbs_diss-1072 |
Date | 22 May 2002 |
Creators | Forman, Daron |
Publisher | eScholarship@UMMS |
Source Sets | University of Massachusetts Medical School |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | GSBS Dissertations and Theses |
Rights | Copyright is held by the author, with all rights reserved., select |
Page generated in 0.0026 seconds