Return to search

The effect of submerged arc welding parameters on the properties of pressure vessel and wind turbine tower steels

Submerged arc welding (SAW) is commonly used for fabricating large diameter linepipes, pressure vessels and wind turbine towers due to its high deposition rate, high quality welds, ease of automation and low operator skill requirement. In order to achieve high melting efficiency required for high productivity, best weld quality and good mechanical properties in manufacturing industries, the welding process parameters need to be optimized.
In this study, the effect of SAW current and speed on the physical and mechanical properties of ASME SA516 Gr. 70 (pressure vessel steel) and ASTM A709 Gr. 50 (wind turbine tower steel) were investigated. Three welding currents (700 A, 800 A and 850 A) and four travel speeds (5.9, 9.3, 12.3 and 15.3 mm/s) were used to weld sample plates measuring 915 mm x 122 mm x 17 mm. The weld quality and properties were evaluated using weld geometry measurements, visual inspection, ultrasonic inspection, hardness measurements, optical microscopy, tensile testing, Charpy impact testing and scanning electron microscopy.
It was found that the physical and mechanical properties of the weldments were affected by SAW parameters. Severe undercuts were found at high travel speed and welding current. Low heat input caused lack of penetration defects to form in the weldments. The welding process melting efficiency (WPME) achieved was up to 80%. The hardness of the coarse grain heat affected zone (CGHAZ) and the weld metal increased with travel speed. The toughness of both materials increased with increasing travel speed and welding current. The yield and tensile strengths of the weldments of SA516 Gr.70 and A709 Gr.50 steels were within the same range as those of their respective parent metals because all test specimens broke in the parent metals. Also, the parent metals of both steels had the highest fracture strain and percent elongation. The percentage elongation increased with travel speed but decreased with welding current.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:SSU.etd-10072008-161112
Date21 October 2008
CreatorsYang, Yongxu
ContributorsYang, Qiaoqin, Oguocha, Ikechukwuka N., Fotouhi, Reza, Yannacopoulos, Spiro
PublisherUniversity of Saskatchewan
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-10072008-161112/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0201 seconds