Return to search

Risk factor modeling of Hedge Funds' strategies / Risk factor modeling of Hedge Funds' strategies

This thesis aims to identify main driving market risk factors of different strategies implemented by hedge funds by looking at correlation coefficients, implementing Principal Component Analysis and analyzing "loadings" for first three principal components, which explain the largest portion of the variation of hedge funds' returns. In the next step, a stepwise regression through iteration process includes and excludes market risk factors for each strategy, searching for the combination of risk factors which will offer a model with the best "fit", based on The Akaike Information Criterion - AIC and Bayesian Information Criterion - BIC. Lastly, to avoid counterfeit results and overcome model uncertainty issues a Bayesian Model Average - BMA approach was taken. Key words: Hedge Funds, hedge funds' strategies, market risk, principal component analysis, stepwise regression, Akaike Information Criterion, Bayesian Information Criterion, Bayesian Model Averaging Author's e-mail: aleksaradosavcevic@gmail.com Supervisor's e-mail: mp.princ@seznam.cz

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:357618
Date January 2017
CreatorsRadosavčević, Aleksa
ContributorsPrinc, Michael, Šopov, Boril
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0016 seconds