To make three dimensional measurements using a stereo camera system, the intrinsic and extrinsic calibration of the system should be obtained. Furthermore, to allow zooming, intrinsic parameters should be re-estimated using only scene constraints. In this study both manual and autocalibration algorithms are implemented and tested. The implemented manual calibration system is used to calculate the parameters of the calibration with the help of a planar calibration object. The method is tested on different internal calibration settings and results of 3D measurements using the obtained calibration is presented. Two autocalibration methods have been implemented. The first one requires a general motion while the second method requires a pure rotation of the cameras.
The autocalibration methods require point matches between images. To achieve a fully automated process, robust algorithms for point matching have been implemented. For the case of general motion the fundamental matrix relation is used in the matching algorithm. When there is only rotation between views, the homography relation is used. The results of variations on the autocalibration methods are also presented.
The result of the manual calibration has been found to be very reliable. The results of the first autocalibration method are not accurate enough but it has been shown that the calibration from rotating cameras performs precise enough if rotation between images is sufficiently large.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12605296/index.pdf |
Date | 01 September 2004 |
Creators | Ozuysal, Mustafa |
Contributors | Halici, Ugur |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | M.S. Thesis |
Format | text/pdf |
Rights | To liberate the content for public access |
Page generated in 0.0015 seconds