Return to search

Stereo vision based obstacle avoidance in indoor environments

This thesis presents an indoor obstacle avoidance system for car-like mobile robot. The system consists of stereo vision, map building, and path planning. Stereo vision is performed on stereo images to create a geometric map of the environment. A fast sparse stereo approach is employed. For different areas of the image there are different optimal values of disparity range. A multi-pass method to combine results at different disparity range is proposed. To reduce computational complexity the matching is limited to areas that are likely to generate useful data. The stereo vision system outputs a more complete disparity map. Abstract Map building involves converting the disparity map into map coordinates using triangulation and generating a list of obstacles. Occupancy grids are built to aid a hierarchical collision detection. The fast collision detection method is used by the path planner. Abstract A steering set path planner calculates a path that can be directly used by a car-like mobile robot. An adaptive approach using occupancy grid information is proposed to improve efficiency. Using a non-fixed steering set the path planner spends less computation time in areas away from obstacles. The path planner populates a discrete tree to generate a smooth path. Two tree population methods were trialled to execute the path planner. The methods are implemented and experimented on a real car-like mobile robot.

Identiferoai:union.ndltd.org:ADTP/258229
Date January 2009
CreatorsChiu, Tekkie Tak-Kei, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW
PublisherPublisher:University of New South Wales. Mechanical & Manufacturing Engineering
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://unsworks.unsw.edu.au/copyright, http://unsworks.unsw.edu.au/copyright

Page generated in 0.0018 seconds