In very few mobile robotic applications stereo vision based navigation and mapping is used because dealing with stereo images is very hard and very time consuming. Despite all the problems, stereo vision still becomes one of the most important resources of knowing the world for a mobile robot because imaging provides much more information than most other sensors. Real robotic applications are very complicated because besides the problems of finding how the robot should behave to complete the task at hand, the problems faced while controlling the robot&rsquo / s internal parameters bring high computational load. Thus, finding the strategy to be followed in a simulated world and then applying this on real robot for real applications is preferable. In this study, we describe an algorithm for object recognition and cognitive map formation using stereo image data in a 3D virtual world where 3D objects and a robot with active stereo imaging system are simulated. Stereo imaging system is simulated so that the actual human visual system properties are parameterized. Only the stereo images obtained from this world are supplied to the virtual robot. By applying our disparity algorithm, depth map for the current stereo view is extracted. Using the depth information for the current view, a cognitive map of the environment is updated gradually while the virtual agent is exploring the environment. The agent explores its environment in an intelligent way using the current view and environmental map information obtained up to date. Also, during exploration if a new object is observed, the robot turns around it, obtains stereo images from different directions and extracts the model of the object in 3D. Using the available set of possible objects, it recognizes the object.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12604737/index.pdf |
Date | 01 September 2003 |
Creators | Ulusoy, Ilkay |
Contributors | Halici, Ugur |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | Ph.D. Thesis |
Format | text/pdf |
Rights | To liberate the content for public access |
Page generated in 0.0019 seconds