In der vorliegenden Arbeit wird die Synthese von verschiedenen bicyclischen Substanzklassen gemäß des folgenden Syntheseschemas beschrieben. Es wurden verschiedene 2,4-di-(2-pyridyl)- oder 2,4-di-(3-fluorphenyl)-substituierte 9-Oxo-3,7-diazabicyclo[3.3.1]nonan-1,5-dicarbonsäurediester (9-Oxo-BNDS: 21-25, 27-55) synthetisiert, welche 1. teilweise als Vorstufen zur Synthese von 1,5-Di-(hydroxymethyl)-3,7-diazabicyclo[3.3.1]nonan-9-olen (Triole: 56-65) eingesetzt wurden, 2. teilweise als Vorstufen zur Synthese von 9-Hydroxy-3,7-diazabicyclo[3.3.1]nonan-1,5-dicarbonsäuredimethylestern (9-OH-BNDS: 66-69) verwendet wurden, die ihrerseits zu 9-O-Acyl-3,7-diazabicyclo[3.3.1]nonan-1,5-dicarbonsäuredimethylestern (9-OAc-BNDS: 70-76) umgesetzt wurden oder 3. als Vorstufe zur Synthese der 9-Oxo-3,7-diazabicyclo[3.3.1]nonan-1,5-dicarbonsäure 26 dienten. Die 9-Oxo-BNDS wurden aus den kommerziell erhältlichen Aceton-1,3-dicarbonsäuredimethyl- (ADS-Me), -ethylester (ADS-Et) oder den ADS 1-3 synthetisiert, die ihrerseits ausgehend von ADS-Me und den entsprechenden Alkoholen durch Umesterung hervorgehen. Die ADS wurden durch eine Mannich-Kondensation mit zwei Äquivalenten eines aromatischen Aldehyds und einem Äquivalent eines primären Amins in MeOH zu den entsprechenden 4-Piperidon-3,5-dicarbonsäureestern (PDS: 4-20) umgesetzt, die wiederum ebenfalls durch eine Mannich-Kondensation mit zwei Äquivalenten Formaldehyd und einem Äquivalent eines primären Amins in THF oder Aceton zu den entsprechenden 9-Oxo-BNDS reagieren. Dieser Syntheseschritt wurde hinsichtlich Ausbeute, Vereinfachung und Beschleunigung der Aufarbeitung optimiert. Die Stereochemie der so erhaltenen 9-Oxo-BNDS, die in Abhängigkeit vom Substitutionsmuster als cis- oder trans-Isomere entstehen, konnte mittels NMR-Spektroskopie aufgeklärt werden. Der 1,5-Dibenzylester 25 konnte durch katalytische Hydrierung mit Pd/C als Katalysator in EtOAc zur freien 1,5-Dicarbonsäure 26 umgesetzt werden. Die Triole 56-62 wurden ausgehend von den 9-Oxo-BNDS HZ2, 3FLB, 21-24, 28, 33 in einer Eintopfsynthese mittels NaBH4 in THF/MeOH durch Reduktion hergestellt. Die N3- und/oder N7-benzyl-substituierten Triole 57-59 wurden mittels katalytischer Hydrierung mit Pd/C als Katalysator in MeOH zu den entsprechenden NH-substituierten Triolen 63-65 umgesetzt. Mit Hilfe von selektiven 1D-NOESY-Messungen konnte die Stereochemie der Triole bezüglich der Stellung der Hydroxygruppe an C9 zugeordnet werden. Die 9-OH-BNDS 66-69 wurden durch Reduktion der entsprechenden 9-Oxo-BNDS HZ2, 3FLB, 32, 33 mit Na(CN)BH3 in MeOH synthetisiert. Die Reduktion verläuft nicht stereoselektiv, sodass die dabei entstehenden 9-OH-BNDS als Diastereomerengemische durch syn/anti-Isomerie der C9-OH-Gruppe anfallen. Das Diastereomerengemisch 66 konnte durch präparative Säulenchromatographie in die beiden reinen Isomere 66a (anti) und 66b (syn) getrennt werden. Das Gemisch 67 konnte durch Entwicklung einer HPLC-Methode und anschließender Übertragung auf ein Flashchromatographiesystem präparativ in die diastereomerenreinen Isomere 67a (anti) und 67b (syn) getrennt werden. Die stereochemische Zuordnung der Konfiguration an C9 wurde durch selektive 1D-NOESY-Messungen erreicht. Die Synthese der 9-OAc-BNDS 70-76 erfolgte durch Umsetzen des entsprechenden 9-OH-BNDS 66a, 67a, 67-69 mit einer äquimolaren Menge eines entsprechenden Carbonsäurechlorids und DBU als Hilfsbase in CHCl3. Im Fall der Synthese von Verbindung 76 musste das eingesetzte Decanoylchlorid mit Zinkstaub aktiviert werden. Die Zuordnung der Stereochemie der so erhaltenen Verbindungen basiert auf selektiven 1D-NOESY-Messungen. Die Verbindungen 25-27, 31, 56, 60, 63-66, 66a/b, 67, 67a/b, 70a, 71, 71a wurden auf pharmakologische Affinität zum kappa-Opioidrezeptor (OR) untersucht. Dadurch konnten die Verbindungen 71, 71a und 67a/b als hochaffine Liganden des kappa-OR identifizert werden. Durch die qualitative Analyse der Struktur-Wirkungs-Beziehungen, die auf dem Vergleich der pharmakologischen Daten dieser Arbeit und vorangegangener Arbeiten basiert, konnten folgende Anforderungen an selektive Liganden des kappa-OR mit 3,7-Diazabicyclo[3.3.1]nonan-Grundgerüst ermittelt werden: 1. Das Grundgerüst sollte an Position 2/4 mit 2-Pyridylresten substituiert sein. 2. An Position N3 und N7 dürfen keine Substituenten angebracht sein, die größer als ein Methylrest sind. 3. Das Molekül sollte an Position 1/5 mit Methylestergruppen versehen sein. 4. Der 3,7-Diazabicyclus kann an Position 9 eine -OH, -OAc oder möglicher-weise auch entsprechende, sterisch anspruchsvollere Funktionen besitzen. 5. Die Stellung des Substituenten an Position 9 sollte vorzugsweise anti-konfiguriert sein, bezogen auf den höher substituierten Piperidinring. / The aim of the present work was the synthesis of several bicyclic compound classes as described in the following synthetic pathway. Various 2,4-di-(2-pyridyl)- or 2,4-di-(3-fluorphenyl)-substituted 9-oxo-3,7-diazabicyclo[3.3.1]-nonan-1,5-dicarboxylates (9-Oxo-BNDS: 21-25, 27-55) have been synthesized, which 1. were partially used as templates for the synthesis of 1,5-di-(hydroxymethyl)-3,7-diazabicyclo[3.3.1]nonan-9-oles (trioles: 56-65), 2. were partially used as starting compounds for the synthesis of dimethyl-9-hydroxy-3,7-diazabicyclo[3.3.1]nonan-1,5-dicarboxylates (9-OH-BNDS: 66-69), which in turn were used for the preparation of dimethyl-9-O-acyl-3,7-diazabicyclo[3.3.1]nonan-1,5-dicarboxylates (9-OAc-BNDS: 70-76), 3. served as starting compound for the synthesis of the 9-oxo-3,7-diazabicyclo-[3.3.1]nonan-1,5-dicarboxylic acid 26. The 9-Oxo-BNDS were prepared starting from the commercially available di-methyl- (ADS-Me) or diethylacetone-1,3-dicarboxylate (ADS-Et) or the ADS 1-3, which themselves were synthesized by transesterification of ADS-ME with the corresponding alcohols. The ADS were converted to the respective 4-piperidon-3,5-dicarboxylates (PDS: 4-20) by means of a Mannich-condensation with two equivalents of an aromatic aldehyde and one equivalent of a primary amine in MeOH as a solvent. The PDS were subjected to a second Mannich-condensation with two equivalents of formaldehyde and one equivalent of a primary amine in THF or acetone to form the corresponding 9-Oxo-BNDS. This step was optimized with respect to the yields, simplification and acceleration of the refurbishment. The stereochemistry of the so achieved 9-Oxo-BNDS, which can emerge as cis- or trans-isomers dependent on their substitution pattern, was elucidated by means of NMR-spectroscopy. The dibenzylcarboxylate 25 could be converted to the free dicarboxylic acid 26 by means of catalytic hydrogenation with Pd/C as catalyst in EtOAc as solvent. The trioles 56-62 were synthesized starting from the the 9-Oxo-BNDS HZ2, 3FLB, 21-24, 28, 33 in a one-pot-reduction-step by means of NaBH4 in THF/MeOH. The N3- and/or N7-benzyl-substituted trioles 57-59 were converted to the respective NH-substituted trioles 63-65 by catalytic hydrogenation with Pd/C in MeOH. The assignment of the hydroxy-group at C9 was achieved via selective 1D-NOESY measurements. The 9-OH-BNDS 66-69 were perpared by reduction of of the appropriate 9-Oxo-BNDS HZ2, 3FLB, 32, 33 with Na(CN)BH3 in MeOH. The reduction does not proceed in a stereoselective manner, which in consequence leads to the isolation of syn/anti-isomers with respect to the hydroxygroup at C9. The isomeric mixture 66 could be resolved into both pure isomers 66a (anti) and 66b (syn) by means of preparative column chromatography. The isomeric mixture 67 was separated in order to obtain the pure isomers 67a (anti) and 67b (syn) by preparative flash-chromatography. The stereochemical assignment of the hydroxygroup at C9 was accomplished by selective 1D-NOESY measurements. The synthesis of the 9-OAc-BNDS 70-76 was carried out by reaction of the respective 9-OH-BNDS 66a, 67a, 67-69 with an equimolar amount of the congruent acylchloride and DBU as an auxilary base in CHCl3. In the case of compound 76 the deployed decanoylchloride had to be activated with zinc dust. The stereochemical assignment of the so obtained compounds is based on selective 1D-NOESY measurements. The compounds 25-27, 31, 56, 60, 63-66, 66a/b, 67, 67a/b, 70a, 71, 71a were investigated with respect to their pharmacological affinity to the kappa-opioid receptor (OR). Compounds 71, 71a and 67a/b were identified to be highly affine ligands to the kappa-OR. By means of the analysis of structure-affinity-relationships, which are based upon the comparison of the pharmacological data of the present work and previous findings, the following prerequisites for high affinity towards the kappa-OR were derived for compounds bearing the 3,7-diazabicyclo[3.3.1]nonan-skeleton: 1. The skeleton at position 2/4 should be substituted by 2-pyridyl moieties. 2. No substituents being larger than a methyl-group should be attached to the nitrogens N3 and N7. 3. The molecule should carry a methyl carboxylate at positions 1/5. 4. The 3,7-diazabicycle may possess a -OH, -OAc or probably a respective, even sterically larger substituent at position 9. 5. The orientation of the substituent at position 9 should be preferably of anti-configuration according to the higher substituted piperidine ring.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:1163 |
Date | January 2005 |
Creators | Projahn, Holger |
Source Sets | University of Würzburg |
Language | deu |
Detected Language | English |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0032 seconds