Return to search

A Compliant Mechanism-Based Variable-Stiffness Joint

A review of current variable-stiffness actuators reveals a need for more simple, cost effective, and lightweight designs that can be easily incorporated into a variety of human-interactive robot platforms. This thesis considers the potential use of compliant mechanisms to improve the performance of variable-stiffness actuators. The advantages and disadvantages of various concepts using compliant mechanisms are outlined, along with ideas for further exploration. A new variable-stiffness actuator that uses a compliant flexure as the elastic element has been modeled, built, and tested. This new design involves a variable stiffness joint that makes use of a novel variable transmission. A prototype has been built and tested to verify agreement with the model which shows a reasonable range of stiffness and good repeatability. Ideas for further exploration are identified.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-6264
Date01 April 2015
CreatorsRobinson, Jacob Marc
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rightshttp://lib.byu.edu/about/copyright/

Page generated in 0.0019 seconds