Return to search

Design and analysis of Discrete Cosine Transform-based watermarking algorithms for digital images. Development and evaluation of blind Discrete Cosine Transform-based watermarking algorithms for copyright protection of digital images using handwritten signatures and mobile phone numbers.

This thesis deals with the development and evaluation of blind discrete cosine transform-based watermarking algorithms for copyright protection of digital still images using handwritten signatures and mobile phone numbers. The new algorithms take into account the perceptual capacity of each low frequency coefficients inside the Discrete Cosine Transform (DCT) blocks before embedding the watermark information. They are suitable for grey-scale and colour images. Handwritten signatures are used instead of pseudo random numbers. The watermark is inserted in the green channel of the RGB colour images and the luminance channel of the YCrCb images. Mobile phone numbers are used as watermarks for images captured by mobile phone cameras. The information is embedded multiple-times and a shuffling scheme is applied to ensure that no spatial correlation exists between the original host image and the multiple watermark copies. Multiple embedding will increase the robustness of the watermark against attacks since each watermark will be individually reconstructed and verified before applying an averaging process. The averaging process has managed to reduce the amount of errors of the extracted information. The developed watermarking methods are shown to be robust against JPEG compression, removal attack, additive noise, cropping, scaling, small degrees of rotation, affine, contrast enhancements, low-pass, median filtering and Stirmark attacks. The algorithms have been examined using a library of approximately 40 colour images of size 512 512 with 24 bits per pixel and their grey-scale versions. Several evaluation techniques were used in the experiment with different watermarking strengths and different signature sizes. These include the peak signal to noise ratio, normalized correlation and structural similarity index measurements. The performance of the proposed algorithms has been compared to other algorithms and better invisibility qualities with stronger robustness have been achieved.

Identiferoai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/5450
Date January 2011
CreatorsAl-Gindy, Ahmed M.N.
ContributorsQahwaji, Rami S.R., Al-Ahmad, Hussain
PublisherUniversity of Bradford, School of Computing, Informatics and Media
Source SetsBradford Scholars
LanguageEnglish
Detected LanguageEnglish
TypeThesis, doctoral, PhD
Rights<a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/3.0/"><img alt="Creative Commons License" style="border-width:0" src="http://i.creativecommons.org/l/by-nc-nd/3.0/88x31.png" /></a><br />The University of Bradford theses are licenced under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/3.0/">Creative Commons Licence</a>.

Page generated in 0.0017 seconds