In the realm of neuroelectronics, the challenge lies in achieving finer observations of physiological processes to comprehend neuronal interactions and computations. This necessitates the development of more compliant and biomimetic interfaces for improved integration with biological tissues, enabling finer physiological process observations. Commonly used flat and static electrode interfaces contrast sharply with the dynamic, complex, and three dimensional (3D) extracellular matrix (ECM) in which cells reside. Introducing 3D patterns on electrode surfaces enhances cell-chip coupling, improving the signal recording. Moreover, inorganic electrodes are stiff and rigid, creating mechanical mismatches with softer biological tissues, and they fail to fully capture ionic conduction.This thesis addresses these challenges by focusing on designing and engineering a multi-layer dynamic and stimuli-responsive bioelectronic interface. The system combines light-responsive, deformable polymers like Poly(Disperse Red 1-methacrylate) (pDR1m) with conductive polymers such as Poly(3,4-ethylenedioxythiophene): poly(stirensulfonate) (PEDOT:PSS). pDR1m responds to light, exhibiting 3D surface topography deformation, while PEDOT:PSS facilitates electrical recording and stimulation of cells, offering mixed electronic and ionic conduction as well as good mechanical properties. The potential use of an intermediate Polydimethylsiloxane (PDMS) film to improve layer adhesion is also explored. The individual and multi-layer samples were first optimized for spin coating manufacturing, and then thoroughly characterized to investigate their thickness, morphology, optical and electrochemical properties. Patterning of pDR1m-based samples was carried out using laser scanning confocal microscopy and a Lloyd’s mirror interferometer.The pDR1m\PEDOT:PSS sample demonstrates promising morphological and conductive properties, and the presence of PEDOT:PSS does not alter the absorption spectra of pDR1m. The multi-layer approach also supports efficient inscription of 3D surface reliefs without damaging the conductive layer. In conclusion, this work successfully designs conductive and dynamic light-driven films, which showcase good potential for bioelectronics and neuroelectronic interfaces. These interfaces could lead to enhanced investigations into combined electromechanical stimulation on cells and provide a more biomimetic coupling with biological tissues. / Inom neuroelektronikens område ligger utmaningen i att uppnå finare observationer av fysiologiska processer för att förstå neuronala interaktioner och beräkningar. Detta kräver utveckling av mer följsamma och biomimetiska gränssnitt för förbättrad integration med biologiska vävnader, vilket möjliggör finare fysiologiska processobservationer. Vanligt använda platta och statiska elektrodgränssnitt står i skarp kontrast till den dynamiska, komplexa och tredimensionella (3D) extracellulära matrisen (ECM) i vilken celler finns. Att introducera 3D-mönster på elektrodytor förbättrar cell-chip-kopplingen, vilket förbättrar signalinspelningen. Dessutom är oorganiska elektroder styva och stela, vilket skapar mekaniska felmatchningar med mjukare biologiska vävnader, och de lyckas inte helt fånga jonledning.Den här avhandlingen tar upp dessa utmaningar genom att fokusera på att designa och konstruera ett flerlagers dynamiskt och stimuli-responsivt bioelektroniskt gränssnitt. Systemet kombinerar ljuskänsliga, deformerbara polymerer som Poly(Disperse Red 1-methacrylate) (pDR1m) med ledande polymerer som Poly(3,4-etylendioxitiofen): poly(stirensulfonat) (PEDOT:PSS). pDR1m reagerar på ljus och uppvisar 3D-yttopografideformation, medan PEDOT:PSS underlättar elektrisk inspelning och stimulering av celler, erbjuder blandad elektronisk och jonledning samt goda mekaniska egenskaper. Den potentiella användningen av en mellanliggande polydimetylsiloxan (PDMS) film för att förbättra skiktvidhäftningen undersöks också. De individuella och flerskiktiga proverna optimerades först för spinnbeläggningstillverkning och karakteriserades sedan grundligt för att undersöka deras tjocklek, morfologi, optiska och elektrokemiska egenskaper. Mönster av pDR1m-baserade prover utfördes med laserskanning konfokalmikroskopi och en Lloyds spegelinterferometer.pDR1m\PEDOT:PSS-provet visar lovande morfologiska och ledande egenskaper, och närvaron av PEDOT:PSS förändrar inte absorptionsspektra för pDR1m. Flerskiktsmetoden stöder också effektiv inskription av 3D-ytreliefer utan att skada det ledande lagret. Sammanfattningsvis designar detta arbete framgångsrikt ledande och dynamiska ljusdrivna filmer, som visar upp god potential för bioelektronik och neuroelektroniska gränssnitt. Dessa gränssnitt kan leda till förbättrade undersökningar av kombinerad elektromekanisk stimulering på celler och ge en mer biomimetisk koppling med biologiska vävnader.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-337124 |
Date | January 2023 |
Creators | Terenzi, Luca |
Publisher | KTH, Tillämpad fysik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-SCI-GRU ; 2023:329 |
Page generated in 0.0026 seconds