Friction stir welding was used to join 3 mm Ti-6Al-4V alloy in a butt joint configuration. This research focused on optimization of a tool geometry and the interaction between process parameters and static performance of welded joints. The main parameters varied were tool travel speed and tool rotational speed. The results showed a relationship between heat input as a function of process parameters and static strength. Improved tensile properties correspond to high heat input. The hardness plots revealed an increase in hardness on both the stir zone and heat affected zone despite the small defects on the weld root. The weld microstructure was also evaluated, which showed a variation in microstructure on both the heat affected zone and stir zone in comparison to the parent material. It was also found that the use of MgO as a heat barrier on the backing plate was detrimental to the weld tensile properties of butt-welded plates compared to bead-on-plate welds of which MgO had no influence.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:nmmu/vital:9618 |
Date | January 2010 |
Creators | Mashinini, Peter Madindwa |
Publisher | Nelson Mandela Metropolitan University, Faculty of Engineering, the Built Environment and Information Technology |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Thesis, Masters, MTech |
Format | xix, 123 leaves, pdf |
Rights | Nelson Mandela Metropolitan University |
Page generated in 0.002 seconds