The variation of genome content and structure across the tree of life is astounding and can provide clues to understand the process of evolution. Overall, this helps us understand the history of life and how organisms have fundamentally changed and adapted to their environments. Gene duplication is an important mechanism for molecular evolution because it provides opportunity for functional novelty and molecular innovation. Gene duplication creates new functional gene copies with different selective pressures that allow them to take on new or specialized functions. Throughout this work, I explored the interplay between genetic changes, molecular phenotype, and the selection of duplicate gene copies. I particularly focused on the genetic opportunity, consequences, and selective pressures of the mechanisms for short-term and long-term duplicate copy retention. I modeled the stochastic processes of mutation and selection and their effect on duplicate gene copy retention. Specifically, I modeled the interplay between subfunctionalization and dosage balance and found that selection may cause genes that are sensitive to dosage balance effects to experience delayed subfunctionalization, but ultimately lead to higher levels of subfunctionalization. These findings suggest that subfunctionalization may not occur as a purely neutral process. Next, I used survival analysis methods to model patterns of duplicate gene retention in genomes experiencing consecutive whole genome duplication events. I modeled three hypotheses to explain patterns of duplicate gene retention including the Independence Hypothesis, the Gene Duplicability Hypothesis, and a novel Mutational Opportunity Hypothesis. Under the Gene Duplicability and Mutational Opportunity hypotheses, the expected patterns of duplicate gene retention after consecutive whole genome duplication events are greatly affected by the ages of the whole genome duplication events and the functional properties of the genomic content that influence opportunity and selection. Additionally, I describe how statistical model testing techniques can be applied to investigate which hypothesis is consistent with patterns of retention in real-world phylogenetic datasets. I used these described techniques to explore the hypotheses’ parameter space consistent with a modest dataset of fish and plant lineages. These results suggest that a gene duplicate’s retention after whole genome duplication events may be influenced by its functional properties. Key findings underscore the multifaceted nature of duplicate gene retention, influenced by a myriad of factors including genetic opportunity, selective pressures, and evolutionary context. By dissecting the underlying mechanisms driving duplicate gene retention, this dissertation advances our understanding of the evolutionary dynamics shaping genome evolution and functional diversity across diverse biological systems. / Biology
Identifer | oai:union.ndltd.org:TEMPLE/oai:scholarshare.temple.edu:20.500.12613/10298 |
Date | 05 1900 |
Creators | Wilson, Amanda, 0000-0002-4711-377X |
Contributors | Liberles, David A., Pond, Sergei, Spigler, Rachel B., Carvunis, Anne-Ruxandra |
Publisher | Temple University. Libraries |
Source Sets | Temple University |
Language | English |
Detected Language | English |
Type | Thesis/Dissertation, Text |
Format | 128 pages |
Rights | IN COPYRIGHT- This Rights Statement can be used for an Item that is in copyright. Using this statement implies that the organization making this Item available has determined that the Item is in copyright and either is the rights-holder, has obtained permission from the rights-holder(s) to make their Work(s) available, or makes the Item available under an exception or limitation to copyright (including Fair Use) that entitles it to make the Item available., http://rightsstatements.org/vocab/InC/1.0/ |
Relation | http://dx.doi.org/10.34944/dspace/10260, Theses and Dissertations |
Page generated in 0.0021 seconds