Return to search

Machine Learning based Methods to Improve Power System Operation under High Renewable Pennetration

In an attempt to thwart global warming in a concerted way, more than 130 countries have committed to becoming carbon neutral around 2050. In the United States, the Biden ad- ministration has called for 100% clean energy by 2035. It is estimated that in order to meet that target, the energy production from solar and wind should increase to 50-70% from the current 11% share. Under higher penetration of solar and wind, the intermittency of the energy source poses critical problems in forecasting, uncertainty quantification, reserve man- agement, unit commitment, and economic dispatch, and presents unique challenges to the distribution system, including predicting solar adoption by the user as well as forecasting end-use load profiles. While these problems are complex, advances in machine learning and artificial intelligence provide opportunities for novel paradigms for addressing the challenges. The overall aim of the dissertation is to harness data-driven and model-based techniques and develop computationally efficient tools for improved power systems operation under high re- newables penetration in the next-generation electric grid. Some of the salient contributions of this work are the reduction in the number of uncertain scenarios by 99%; dramatic reduc- tion in the computational overhead to simulate stochastic unit commitment and economic dispatch on a single-node electric-grid system to merely 10 seconds from 24 hours; reduc- tion in the total monthly operating cost of two-stage stochastic economic dispatch by an average of 5%, and reduction in average overall reserve due to intermittency in renewables by 50%; and improvement in the existing end-use load prediction and rooftop PV adopter identification tools by a considerable margin. / Doctor of Philosophy / In an attempt to thwart global warming in a concerted way, more than 130 countries have committed to becoming carbon neutral around 2050. In the United States, the Biden ad- ministration has called for 100% clean energy by 2035. It is estimated that in order to meet that target, the energy production from solar and wind should increase to 50-70% from the current 11% share. Under higher penetration of solar and wind, the intermittency of the energy source poses critical problems in forecasting, uncertainty quantification, reserve man- agement, unit commitment, and economic dispatch, and presents unique challenges to the distribution system, including predicting solar adoption by the user as well as forecasting end-use load profiles. While these problems are complex, advances in machine learning and artificial intelligence provide opportunities for novel paradigms for addressing the challenges. The overall aim of the dissertation is to harness data-driven and model-based techniques and develop computationally efficient tools for improved power systems operation under high re- newables penetration in the next-generation electric grid. Some of the salient contributions of this work are the reduction in the number of uncertain scenarios by 99%; dramatic reduc- tion in the computational overhead to simulate stochastic unit commitment and economic dispatch on a single-node electric-grid system to merely 10 seconds from 24 hours; reduc- tion in the total monthly operating cost of two-stage stochastic economic dispatch by an average of 5%, and reduction in average overall reserve due to intermittency in renewables by 50%; and improvement in the existing end-use load prediction and rooftop PV adopter identification tools by a considerable margin.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/111921
Date19 September 2022
CreatorsBhavsar, Sujal Pradipkumar
ContributorsMechanical Engineering, Pitchumani, Ranga, Acar, Pinar, Rahman, Saifur, Tafti, Danesh K.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0011 seconds