The purpose of this thesis is to develop some new algorithms based on optimization techniques for solving some problems in some areas of telecommunications and the Internet. There are two main parts to this thesis. In the first part we discuss optimization based stochastic and queueing models in telecommunications network corrective maintenance. In the second part we develop optimization based clustering (OBC) algorithms for network evolution and multicast routing. The most typical scenario encountered during mathematical optimization modelling in telecommunications, for example, is to minimize the cost of establishment and maintenance of the networks subject to the performance constraints of the networks and the reliability constraints of the networks as well. Most of these optimization problems are global optimization, that is, they have many local minima and most of these local minima do not provide any useful information for solving these problems. Therefore, the development of effective methods for solving such global optimization problems is important. To run the telecommunications networks with cost-effective network maintenance,we need to establish a practical maintenance model and optimize it. In the first part of the thesis, we solve a known stochastic programming maintenance optimization model with a direct method and then develop some new models. After that we introduce queue programming models in telecommunications network maintenance optimization. The ideas of profit, loss, and penalty will help telecommunications companies have a good view of their maintenance policies and help them improve their service. In the second part of this thesis we propose the use of optimization based clustering (OBC) algorithms to determine level-constrained hierarchical trees for network evolution and multicast routing. This problem is formulated as an optimization problem with a non-smooth, non-convex objective function. Different algorithms are examined for solving this problem. Results of numerical experiments using some artifiicial and real-world databases are reported. / Doctor of Philosophy
Identifer | oai:union.ndltd.org:ADTP/266070 |
Date | January 2005 |
Creators | Jia, Long |
Publisher | University of Ballarat |
Source Sets | Australiasian Digital Theses Program |
Detected Language | English |
Rights | Copyright Long Jia |
Page generated in 0.0013 seconds