Return to search

Mathematical programming techniques for solving stochastic optimization problems with certainty equivalent measures of risk

The problem of risk-averse decision making under uncertainties is studied from both modeling and computational perspectives. First, we consider a framework for constructing coherent and convex measures of risk which is inspired by infimal convolution operator, and prove that the proposed approach constitutes a new general representation of these classes. We then discuss how this scheme may be effectively employed to obtain a class of certainty equivalent measures of risk that can directly
incorporate decision maker's preferences as expressed by utility functions. This approach is consequently utilized to introduce a new family of measures, the log-exponential convex measures of risk. Conducted numerical experiments show that this family can be a useful tool when modeling risk-averse decision preferences under heavy-tailed distributions of uncertainties. Next, numerical methods for solving the rising optimization problems are developed. A special attention is devoted to the class p-order cone programming problems and mixed-integer models. Solution approaches proposed include approximation schemes for $p$-order cone and more general nonlinear programming problems, lifted conic and nonlinear valid inequalities, mixed-integer rounding conic cuts and new linear disjunctive cuts.

Identiferoai:union.ndltd.org:uiowa.edu/oai:ir.uiowa.edu:etd-5838
Date01 May 2015
CreatorsVinel, Alexander
ContributorsKrokhmal, Pavlo
PublisherUniversity of Iowa
Source SetsUniversity of Iowa
LanguageEnglish
Detected LanguageEnglish
Typedissertation
Formatapplication/pdf
SourceTheses and Dissertations
RightsCopyright 2015 Alexander Vinel

Page generated in 0.0045 seconds