In business-to-business logistical sourcing events, companies regularly use a bidding process known as tendering in the procurement of transportation services from third-party providers. Usually in the form of an auction involving a single buyer and one or more sellers, the buyer must make decisions regarding with which suppliers to partner and how to distribute the transportation lanes and volume among its suppliers; this is equivalent to solving the optimization problem commonly referred to as the Winner Determination Problem. In order to take into account the complexities inherent to the procurement problem, such as considering a supplier’s network, economies of scope, and the inclusion of business rules and preferences on the behalf of the buyer, we present the development of a mixed-integer linear program to model the reverse combinatorial auction for logistical tenders.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etd-4925 |
Date | 01 August 2018 |
Creators | Kiser, Jennifer |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Rights | Copyright by the authors. |
Page generated in 0.0028 seconds