Return to search

Anomaly or not Anomaly, that is the Question of Uncertainty : Investigating the relation between model uncertainty and anomalies using a recurrent autoencoder approach to market time series

Knowing when one does not know is crucial in decision making. By estimating uncertainties humans can recognize novelty both by intuition and reason, but most AI systems lack this self-reflective ability. In anomaly detection, a common approach is to train a model to learn the distinction between some notion of normal and some notion of anomalies. In contrast, we let the models build their own notion of normal by learning directly from the data in a self-supervised manner, and by introducing estimations of model uncertainty the models can recognize themselves when novel situations are encountered. In our work, the aim is to investigate the relationship between model uncertainty and anomalies in time series data. We develop a method based on a recurrent autoencoder approach, and we design an anomaly score function that aggregates model error with model uncertainty to indicate anomalies. Use the Monte Carlo Dropout as Bayesian approximation to derive model uncertainty. Asa proof of concept we evaluate our method qualitatively on real-world complex time series using stock market data. Results show that our method can identify extreme events in the stock market. We conclude that the relation between model uncertainty and anomalies can be utilized for anomaly detection in time series data.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-199879
Date January 2022
CreatorsVidmark, Anton
PublisherUmeå universitet, Institutionen för datavetenskap
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationUMNAD ; 1363

Page generated in 0.0019 seconds