Return to search

Regulation of rhythmic activity in the stomatogastric ganglion of decapod crustaceans

Neuronal networks produce reliable functional output throughout the lifespan of an animal despite ceaseless molecular turnover and a constantly changing environment. The cellular and molecular mechanisms underlying the ability of these networks to maintain functional stability remain poorly understood. Central pattern generating circuits produce a stable, predictable rhythm, making them ideal candidates for studying mechanisms of activity maintenance. By identifying and characterizing the regulators of activity in small neuronal circuits, we not only obtain a clearer understanding of how neural activity is generated, but also arm ourselves with knowledge that may eventually be used to improve medical care for patients whose normal nervous system activity has been disrupted through trauma or disease. We utilize the pattern-generating pyloric circuit in the crustacean stomatogastric nervous system to investigate the general scientific question: How are specific aspects of rhythmic activity regulated in a small neuronal network?
The first aim of this thesis poses this question in the context of a single neuron. We used a single-compartment model neuron database to investigate whether co-regulation of ionic conductances supports the maintenance of spike phase in rhythmically bursting “pacemaker” neurons. The second aim of the project extends the question to a network context. Through a combination of computational and electrophysiology studies, we investigated how the intrinsic membrane conductances of the pacemaker neuron influence its response to synaptic input within the framework of the Phase Resetting Curve (PRC). The third aim of the project further extends the question to a systems-level context. We examined how ambient temperatures affect the stability of the pyloric rhythm in the intact, behaving animal. The results of this work have furthered our understanding of the principles underlying the long-term stability of neuronal network function.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/53440
Date08 June 2015
CreatorsSoofi, Wafa Ahmed
ContributorsPrinz, Astrid A.
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Formatapplication/pdf

Page generated in 0.0031 seconds