Several CO2 transcritical booster systems in supermarkets use the potential of integrating geothermal storage, enabling subcooling during warm climate conditions as well as being a heat source during cold climate conditions. First of all, field measurements of one of these systems located in Sweden were analysed with particular focus on the heat-recovery performance. The best theoretical operational strategy was compared to the one really implemented and the differences in the annual energy usage were assessed through modelling. The results show that an alternative to the best theoretical operational strategy exists; heat can be extracted from the ground while low-temperature heat is rejected by the gas cooler. Such an alternative strategy has important technical advantages with a negligible increment of the energy usage. In the second part of this work, the benefits of geothermal subcooling were evaluated. Applying the BIN hours method, it was demonstrated that this system is expected to save on average roughly 5% of the total power consumption, in Stockholm’s climate. The models utilized for the winter and summer season were combined to find the relationship between geothermal storage size and annual energy savings. In this way, it was possible to calculate the present value of the operational savings for the study case. Furthermore, a general methodology for assessing the economic feasibility of this system solution is presented. Finally, several scenarios were investigated to produce parametric curves and to perform a sensitivity analysis. Comparing the results with the typical Swedish prices for boreholes, the cases where this system solution is economically justified were identified. These are supermarkets with a Heat Recovery Ratio (HRR) higher than the average. For examples, supermarkets supplying heat to the neighbouring buildings (considering the Stockholm’s climate, systems with an annual average HRR of at least 70%). Relying only on savings from subcooling was found to be not enough to justify a geothermal storage, a not-negligible amount of heat must be extracted in winter. Finally, some interesting concepts and alternatives to a geothermal integration are presented to point out relevant future work.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-289445 |
Date | January 2020 |
Creators | Giunta, Fabio |
Publisher | KTH, Energisystem |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-ITM-EX ; 2020:3 |
Page generated in 0.002 seconds