Return to search

Mathematical modelling and control of renewable energy systems and battery storage systems

Intermittent nature of renewable energy sources like the wind and solar energy poses new challenges to harness and supply uninterrupted power for consumer usage. Though, converting energy from these sources to useful forms of energy like electricity seems to be promising, still, significant innovations are needed in design and construction of wind turbines and PV arrays with BS systems. The main focus of this research project is mathematical modelling and control of wind turbines, solar photovoltaic (PV) arrays and battery storage (BS) systems. After careful literature review on renewable energy systems, new developments and existing modelling and controlling methods have been analysed. Wind turbine (WT) generator speed control, turbine blade pitch angle control (pitching), harnessing maximum power from the wind turbines have been investigated and presented in detail. Mathematical modelling of PV arrays and how to extract maximum power from PV systems have been analysed in detail. Application of model predictive control (MPC) to regulate the output power of the wind turbine and generator speed control with variable wind speeds have been proposed by formulating a linear model from a nonlinear mathematical model of a WT. Battery chemistry and nonlinear behaviour of battery parameters have been analysed to present a new equivalent electrical circuit model. Converting the captured solar energy into useful forms, and storing it for future use when the Sun itself is obscured is implemented by using battery storage systems presenting a new simulation model. Temperature effect on battery cells and dynamic battery pack modelling have been described with an accurate state of charge estimation method. The concise description on power converters is also addressed with special reference to state-space models. Bi-directional AC/DC converter, which could work in either rectifier or inverter modes is described with a cost effective proportional integral derivative (PID/State-feedback) controller.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:765933
Date January 2017
CreatorsWijewardana, Singappuli M.
PublisherQueen Mary, University of London
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://qmro.qmul.ac.uk/xmlui/handle/123456789/24860

Page generated in 0.0078 seconds