Climate change has caused an increase in extreme rain events and flooding in certain regions across the globe. During rain events, water flows over impervious surfaces structures such as roads and sidewalks, picking up contaminants such as metals, fertilizers and other nutrients, and various organics that which may impact organisms in such as streams, river, and lakes. Previous work has found significant differences in survival of organisms that were exposed to contaminated stormwater runoff. This study investigated stormwater chemistry parameters at collection sites on the East Tennessee State University campus. Sites were selected based on the extent of human interaction and traffic in the areas. Additionally, acute toxicity of stormwater samples was investigated through 48-h bioassays with the cladoceran, Daphnia magna. In September and November 2022, water chemistry and toxicity analyses were conducted across multiple rain events and over a six-hour time course of an individual rain event. For each of the events and the time course, chlorophyll levels, specific conductivity, pH, temperature, and dissolved oxygen were measured. No statistical difference between the water chemistry parameters between sampling sites or between rain events were observed. Additionally, no significant differences in 48-h survival of D. magna were detected between sampling locations or during the single event time course study. These data suggest that there were no pollutant surges at the collection sites and that D. manga survival was not affected by the contaminants.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:honors-1940 |
Date | 01 May 2023 |
Creators | McIver, Abby, Bidwell, Dr. Joseph R. |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Undergraduate Honors Theses |
Rights | Copyright by the authors., http://creativecommons.org/licenses/by-nc-nd/3.0/ |
Page generated in 0.002 seconds