Urbanization involves the conversion of natural areas to impervious surfaces, which can lead to an increase in the frequency and severity of flood events in cities. To mitigate flood risk, stormwater ponds are constructed to manage urban runoff. Stormwater ponds can also be colonized by wildlife, but their suitability as habitat is disputed due to potential toxicological risks. This study assessed the suitability of stormwater ponds as habitat for the bioindicators Odonata (dragonflies and damselflies) and determined environmental factors that impact their community structure. Odonata (adults, nymphs and exuviae) were sampled at 41 stormwater ponds and 10 natural reference ponds across the National Capital Region of Canada, with a subset of ponds sampled over four years (2015-2018). Plant communities, water quality and surrounding land cover were analyzed at each pond to determine their impacts on Odonata community structure. Overall, stormwater ponds had lower Odonata abundance and a greater variation in species richness and community structure compared to natural ponds but had comparable dragonfly reproduction rates. Plants were the most significant driver of Odonata communities, as stormwater ponds with a high richness of native wetland plants had higher Odonata abundance and community structures similar to natural ponds. Water quality was the second most important driver of Odonata communities with dragonflies showing greater sensitivity to urban contaminants than damselflies. While stormwater ponds had higher concentrations of trace elements than natural ponds (e.g. Ni, V, As), concentrations were generally below toxic levels for all elements except copper and chloride, the latter likely an input from winter road salting. Surrounding land cover was the least important factor affecting Odonata communities. In conclusion, this research demonstrated the importance of local-scale factors related to plants and water quality in sustaining Odonata communities and specifies recommendations for stormwater pond design and maintenance that enhance urban biodiversity.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/40522 |
Date | 20 May 2020 |
Creators | Perron, Mary Ann |
Contributors | Pick, Frances |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.0028 seconds