Urban stormwater management is evolving toward sustainable approaches which rely on dispersed small-scale bioretention BMPs. One such BMP is the flow-through planter, commonly applied in areas where infiltration into in situ soil is restricted or not possible. A project was developed to evaluate 18, vertically scaled flow-through mesocosms. Three replicates of six treatments, including four soil mixtures containing varied percentages of sand, compost and topsoil, were tested for orthophosphate and nitrate removal, volume reduction capabilities, and peak flow attenuation through the application of a synthetic solution over a simulated 2-inch, Type II storm event. Runoff volume was significantly (p < 0.05) reduced compared to controls. Nutrient levels observed along the hydrograph at different time-steps and flow rates revealed patterns not apparent in cumulative results. The observation of preferential flow patterns along with variability in nutrient removal across treatments highlights the need for design modifications of flow-through facilities.
Identifer | oai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-5856 |
Date | 14 December 2013 |
Creators | Overbey, Emily Gwynne |
Publisher | Scholars Junction |
Source Sets | Mississippi State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Page generated in 0.002 seconds