Return to search

Design of a Dielectric Radome using a Ray-Tracing Model for Satellite Communications / Utformning av en dielektrisk radome med hjälp av en strålspårningsmodell för satellitkommunikation

In recent years, there has been a huge increase in the use of satellite communications. This has led to a need for more capacity, which can be solved by moving towards higher frequency bands in search of higher bandwidths. However, the use of higher frequencies entails higher link losses, which makes it essential to use highly directional and steerable antennas. Traditionally, phased array antennas have been used for this kind of application. Nevertheless, they have a limitation in the maximum scan angle due to their effective aperture, which causes a gain reduction following the cosine of the scanning angle. A way of improving the scan range is to add a dielectric radome on top of the array. However, high computational times are needed to simulate this kind of structure using full-wave simulations. For this reason, the first part of this work is focused on adapting and improving an in-house Ray Tracing tool for the particular application under study. The tool computes the path the rays follow from the array to the aperture of the radome using geometric optics, then calculates the amplitude of the electric field at the aperture using ray tube theory, and finally determines the antenna’s radiation pattern using Kirchhoff’s diffraction formula. Moreover, some features have been added to the code to be able to compute the directivity, calculate the absorption and reflection losses, simulate multilayer radomes, and change the array elements’ radiation patterns. A model in Comsol has been developed to validate the results obtained using the Ray Tracing tool and all its added features. Finally, several optimizations have been carried out to increase the scanning range while maintaining a maximum height, and ensuring it complies with the regulatory masks for satellite communications. The optimizations have been performed both using a Particle Swarm Optimizer and manually. / Under de senaste åren har det skett en stor ökning av satellitkommunikations användning. Detta har lett till ett behov för högre kapacitet, vilket kan lösas genom att flytta till högre frekvensband på jakt efter högre bandbredder. Högre bandbredder innebär dock högre länkförluster som gör det oumbärligt att utnyttja rikt- och styrbara antenner. Ursprungligen har fasstyrda antenner använts för denna typ av tillämpning. Ändå finns en begränsning av den maximala skanningsvinkeln på grund av deras effektiva yta som leder till en minskning av förstärkning som är beroende på avsökningsvinkelns cosinus. För att kunna förbättra skanningsintervallen skulle man kunna lägga till en dielektrisk radom ovanpå arrayen. Höga beräkningstider krävs dock att simulera strukturen med helvågssimuleringar. Av denna anledning fokuserar den första delen av denna uppsats att anpassa och förbättra ett internt strålspårnings verktyg för den särskilda applikationen under studie. Verktyget beräknar vägen strålarna tar ifrån arrayen till radomens öppning med hjälp av geometrisk optik, därefter kalkyleras det elektriska fältets amplitud enligt strålrörsteori och till sist fastställs antennens strålningsmönster som definieras av Kirchhoffs diffraktionsformel. Dessutom har vissa funktioner lagts till i koden för att kunna beräkna riktningen, absorptions- och reflektionsförlusterna, simulera flerskiktsradomer och ändra arrayelementens strålningsmönster. En modell i Comsol har utvecklats för att validera resultaten som producerades av strålspårning verktyget och alla dess extra funktioner. Till sist, flera optimeringar har genomförts för att öka skanningsområdet som kan bibehålla en maximal höjd och säkerställa efterlevnaden med regleringsmaskerna för satellitkommunikationerna. Optimeringarna har utförts både manuellt och med hjälp av en partikelsvärmoptimerare. / En els últims anys hi ha hagut un increment majúscul en l’ús de les comunicacions per satèl·lit. Això s’ha traduït en la necessitat de més capacitat, la qual pot ser coberta si ens movem cap a bandes de freqüència més altes, buscant un major ample de banda. Tot i això, l’ús de freqüències més elevades comporta unes majors pèrdues en l’enllaç, les quals fan essencial l’ús d’antenes altament directives i amb capacitat d’escaneig. Tradicionalment, els arranjaments d’antenes de fase gradual han estat utilitzats per aquest tipus d’aplicacions. Tanmateix, tenen una limitació del màxim angle d’escaneig a causa de la seva obertura efectiva, la qual causa una reducció del guany seguint el cosinus de l’angle d’escaneig. Una manera de millorar el rang d’escaneig és afegint un radom dielèctric al damunt de l’arranjament d’antenes. No obstant això, es necessita un alt temps de computació per simular aquest tipus d’estructures amb simuladors d’ona completa. Per aquesta raó, la primera part d’aquest treball està enfocada a adaptar i perfeccionar una eina de traçat de rajos pròpia per l’aplicació en estudi. L’eina calcula el camí que els rajos segueixen des de l’arranjament d’antenes fins a l’obertura del radom utilitzant òptica geomètrica, a continuació computa l’amplitud del camp elèctric a l’obertura mitjançant la teoria del tub de rajos i finalment determina el patró de radiació de l’antena utilitzant la fórmula de difracció de Kirchhoff. Addicionalment, algunes funcions han estat afegides al codi per tal de poder computar la directivitat, calcular les pèrdues d’absorció i reflexió, simular radoms multicapa i canviar els patrons de radiació dels elements de l’arranjament. Un model en Comsol ha estat desenvolupat per tal de validar els resultats obtinguts emprant l’eina de traçat de rajos i totes les seves funcions. Finalment, vàries optimitzacions han estat dutes a terme per tal d’incrementar el rang d’escaneig mantenint una altura màxima i assegurant que es compleix amb les màscares reguladores de comunicacions per satèl·lit. Les optimitzacions han estat realitzades utilitzant tant un optimitzador per eixam de partícules com manualment.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-343361
Date January 2023
CreatorsEspinosa Núria, Flores
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2023:872

Page generated in 0.0019 seconds