Submitted Diploma thesis deals with stress-strain analysis of deformation proximal end of femur with applied total hip joint endoprosthesis (replacement) – shortcut type. To identify deformation and tensity (stress) was used computational simulation by method of final elements. Have been created two computational models TEP- type Santori and type DePuy Proxima. Geometry model Santori was created on low level model geometry through the use of X-ray photograph. Principle of geometry model type DePuy Proxima was real Femoral stem endoprosthesis which was scanned on scanner ATOS. Geometry of both these replacements were set up in program Rhinoceros 4.0 and then execute in program CatiaV5R17. Data for geometry model of femur were gained from CT chains. Material model of femur have been crated in two variants. The first one looks at structure bone tissues and the second one were created by Gruen´s zones. Femoral Stem was weighted by static equivalent resultant force acting in hip joint. Computational model of system and self solution, including depiction results, was done by ANSYS Workbench 11.0 for four model variants.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:378901 |
Date | January 2008 |
Creators | Huťka, Pavel |
Contributors | Fuis, Vladimír, Florian, Zdeněk |
Publisher | Vysoké učení technické v Brně. Fakulta strojního inženýrství |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0179 seconds