Il n'existe pas de nos jours une approche modélisatrice satisfaisante de la fissuration des structures en béton de grandes dimensions, capable d'apporter à la fois des informations sur son comportement global et local. Il s'agit pourtant d'un enjeu important pour la maîtrise de la durée de vie des structures, qui s'inscrit pleinement dans le cadre du développement durable. Nous introduisons ainsi une nouvelle approche pour modéliser le processus de fissuration dans les grandes structures en béton armé, comme les barrages ou les centrales nucléaires. Pour ces types de structures, il n'est pas raisonnable, en terme de temps de calcul, de modéliser explicitement les armatures et l'interface acier-béton. Néanmoins, l'accès aux données sur la fissuration est impératif pour les problèmes d'analyse structurelle et de diffusion. Nous avons donc développé un modèle de fissuration macroscopique probabiliste basé sur une stratégie de simulation multi-échelles afin d'obtenir de linformation sur la fissuration dans la structure, sans avoir besoin d'utiliser des approches locales. La stratégie est une sorte de processus multi-étapes qui reprend toute la modélisation de la structure dans le cadre de la méthode des éléments finis, du maillage, à la création de modèles et l'identification des paramètres. Le coeur de la stratégie est inspiré des algorithmes de régression (apprentissage supervisé): les données à l'échelle locale | base de données d'apprentissage associées à la connaissance pratique du problème mécanique | aident à formuler le modèle macroscopique. L'identification des paramètres du modèle macroscopique probabiliste dépend du problème traité car elle contient des informations sur le comportement local, obtenues en avance à l'aide de l'expérimentation numérique. Cette information est ensuite projetée à l'échelle des éléments finis macroscopiques par analyse inverse. L'expérimentation numérique est réalisé avec un modèle validé de fissuration du béton et d'un modèle d'interface acier-béton, ce qui permet une description détaillée des processus de fissuration. Bien que la phase d'identification puisse ^etre relativement longue, le calcul structurel est ainsi très efficace en terme de temps de calcul, conduisant à une réduction importante du temps de calcul global, sans perte d'information / précision sur résultats à l'èchelle macroscopique / No modeling approach exists nowadays that can provide reliable information about the cracking process in large/complex reinforced concrete structures. However, this is an important issue for controlling the lifespan of structures, which is at the heart of the principal of sustainable development. In this work we introduce a new approach to model the cracking processes in large reinforced concrete structures, like dams or nuclear power plants. For these types of structures it is unreasonable, due to calculation time, to explicitly model the rebars and the steel-concrete bond. Nevertheless, access to data about the cracking process is imperative for structural analysis and diffusion problems. So in order to draw the information about cracking in the structure, without resorting to the use of local approaches, we developed a probabilistic macroscopic cracking model based on a multi-scale simulation strategy. The strategy is a sort of a multi-steps process that takes over the whole modelization of the structure in the framework of the finite element method, from meshing, to model creation, and parameter identification. The heart of the strategy is inspired from regression (supervised learning) algorithms: data on the local scale | the training data coupled with working knowledge of the mechanical problem | would shape the macroscopic model. The probabilistic macroscopic model's identification is case-specific because it holds information about the local behavior, obtained in advance via numerical experimentation. This information is then projected to the macroscopic finite element scale via inverse analysis. Numerical experiments are performed using a validated cracking model for concrete and a bond model for the steel-concrete interface, allowing for a fine description of the cracking processes. Although the identification phase can be relatively time-consuming, the structural simulation is as a result, very time-efficient, leading to a sensitive reduction of the overall computational time, with no loss in information/accuracy of results on the macroscopic scale
Identifer | oai:union.ndltd.org:theses.fr/2017PESC1157 |
Date | 21 April 2017 |
Creators | Nader, Christian |
Contributors | Paris Est, Rossi, Pierre |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0026 seconds