Dans cette thèse, nous nous intéressons à l'étude des capacités de la méta heuristique d'optimisation par colonie de fourmis (Ant Colony Optimization - ACO) pour résoudre des problèmes d'optimisation combinatoire multi-objectif. Dans ce cadre, nous avons proposé une taxonomie des algorithmes ACO proposés dans la littérature pour résoudre des problèmes de ce type. Nous avons mené, par la suite, une étude expérimentale de différentes stratégies phéromonales pour le cas du problème du sac à dos multidimensionnel mono-objectif. Enfin,nous avons proposé un algorithme ACO générique pour résoudre des problèmes d'optimisation multi-objectif. Cet algorithme est paramétré par le nombre de colonies de fourmis et le nombre de structures de phéromone considérées. Il permet de tester et de comparer, dans un même cadre,plusieurs approches. Nous avons proposé six variantes de cet algorithme dont trois présentent de nouvelles approches et trois autres reprennent des approches existantes. Nous avons appliqué et comparé ces variantes au problème du sac à dos multidimensionnel multi-objectif
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00603780 |
Date | 05 May 2009 |
Creators | Alaya, Inès |
Publisher | Université Claude Bernard - Lyon I |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0023 seconds