Technologies such as Artificial Intelligence (AI) and Machine Learning (ML)are disrupting industries worldwide and are being categorized as drivers of a technological revolution. The economic impact is hypothesized to amount to hundreds of billions of US dollars in losses of wages, affecting governmental tax revenue streams consequentially. Firms that manage to leverage these technologies by developing sustained competitive advantage are ultimately the firms that will prosper. Competitive advantage stems from the dynamic capabilities, characterizing the organizational and managerial processes in place to withstand the effects of external environmental turbulence, as with the technological revolution galvanized by AI. This research aimed to analyze how a tele- & cloud-communication company manages to leverage AI to materialize competitive advantage. The research was conducted in two principal parts. First, by developing an ML model for language agnostic document retrieval (LaDPR) and evaluating the performance vs. Facebook’s Dense Passage Retrieval (DPR) model. The ML experiments show that the developed LaDPR model outperforms Facebook’s DPR model by over 2x on average, on multilingual document retrieval. This performance increase rises to over 4x when excluding English, which is the language that DPR was trained on. Secondly, interviews were conducted with key representatives to research how such technological advancements can be exploited in the organizational goal for competitive advantage. Specific vital capabilities such as automated decision-making, knowledge integration, and platform maturity are the three prominent organizational and managerial processes that advanced AI systems can undergird. The results pinpoint that the process of a high-technology department focused solely on developing such AI systems, packaging them with engineering competence to then transfer ownership internally in the organization, ultimately coalesce into hard-to-imitate dynamic capabilities, materializing competitive advantage. / Teknologier som Artificiell Intelligens (AI) och Maskininlärning (ML) splittrar industrier världen över, och kategoriseras som drivkrafter bakom en teknologisk revolution. Effekterna på ekonomin spekuleras uppnå hundratals miljarder USD, som påverkar staters skatteintäkter markant. Företag som lyckas begagna sådan teknologi genom att utveckla långvariga konkurrensfördelar är i slutändan de företag som kommer se framgång. Dessa fördelar härstammar från de dynamiska förmågorna i ett företag, och karakteriseras av organisationella och lednings-orienterade processer som används för att stå emot effekterna av utomstående fluktuationer i marknaden, exemplifierat av den teknologiska revolutionen driven av AI. Den bedrivna forskningen ämnade att analysera hur ett företag inom tele- och molnkommunikation begagnar AI för att materialisera konkurrensfördelar. Forskningen bedrevs i två primära delar. Först, genom att utveckla en ML modell för språkagnostisk dokumenthämtning (LaDPR), och utvärdera prestandan i jämförelse med Facebooks Dense Passage Retrieval (DPR) modell. ML experimenten visar att den utvecklade LaDPR modellen presterar i snitt 2x bättre än Facebooks DPR modell på flerspråkig dokument-hämtning. Prestandaförbättringarna stiger upp till 4x, ifall engelska exkluderas, vilket är det språk som DPR tränades på. Genom att föra intervjuer med nyckelpersoner undersöktes det hur sådana teknologiska framsteg exploateras i de organisationella målen för konkurrensfördelar. Specifika nyckelförmågor som automatiserat beslutsfattande, kunskapsintegrering och plattformmognad är tre huvudsakliga organisationella och ledningsorienterade processer som avancerade AI system kan underbinda. Resultaten visar att processen av en högteknologisk avdelning som fokuserar på utveckling av avancerade AI system, som sedan paketeras tillsammans med ingenjörskompetens, för slutgiltig överföring av ägarskap, i slutändan förenas i svårimiterade dynamiska förmågor, som materialiseras i konkurrensfördelar.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-301650 |
Date | January 2021 |
Creators | Sabri Ayoub, Diar |
Publisher | KTH, Industriell ekonomi och organisation (Inst.), KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-ITM-EX ; 2021:548 |
Page generated in 0.003 seconds