The humerus of a racing horse Thoroughbred is highly susceptible to stress fractures at a characteristic location as a result of cyclic loading. The propensity of a Thoroughbred to exhibit humeral fracture has made equines useful models in the epidemiology of stress fractures. In this study, a racing Thoroughbred humerus was simulated during training using a 3D finite element model in conjunction with a bone remodeling algorithm. Nine muscle forces and two contact forces were applied to the 3-dimensional finite element model, which contains four separate load cases representing fore-stance, mid-stance, aft-stance, and standing. Four different training programs were incorporated into the model, which represent Baseline Layup and Long Layup training programs along with two newly implemented programs for racing, which have an absence of a layup period, last a period of 24 weeks, and a race once every four weeks. Muscle and contact forces were rescaled for all load cases to simulate dirt, turf, and synthetic track surfaces. Bone porosity, damage, and BMU activation frequency were examined at the stress fracture site and compared with a control location called the caudal diaphysis. It was found that race programs exhibited similar remodeling patterns between each other. Damage at the stress fracture site and caudal diaphysis was reduced during all training programs for the turf and synthetic track surfaces with respect to the dirt track surface. Key findings also included changes in bone remodeling at the stress fracture site and caudal diaphysis as a result of turf and synthetic track surfaces. This model can serve as a framework for further studies in human or equine athletes who are susceptible to stress fractures.
Identifer | oai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-1249 |
Date | 01 February 2010 |
Creators | Moore, Ryan James |
Publisher | DigitalCommons@CalPoly |
Source Sets | California Polytechnic State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Master's Theses |
Page generated in 0.002 seconds