Reversible protein phosphorylation is considered the universal language for intracellular communication in all living organisms. This process, catalysed by protein kinases and phosphatases, enables the translation of extracellular signals into cellular responses and also allows for adaptation to a constantly changing environment. In recent years, a number of bacterial eukaryotic-type Ser/Thr protein kinases and phosphatases have been identified. However, their precise functions and substrates are not yet well defined. The genome of opportunistic human pathogen Pseudomonas aeruginosa contains at least five genes encoding putative eukaryotic-type Ser/Thr protein kinases and phosphatases. In the first part of this study, we have attempted to establish the role of Ser/Thr protein kinase PpkA and phosphatase PppA, which belong to type VI secretion system H1-T6SS. Double mutant strain ∆pppA-ppkA was prepared in P. aeruginosa PAO1 background. Phenotypic studies revealed that the mutant grew slower than the wild-type strain in minimal media and exhibited reduced secretion of pigment pyocyanin. In addition, the mutant had altered sensitivity to oxidative and hyperosmotic stress conditions. Consequently, mutant cells had an impaired ability to survive in murine macrophages and an attenuated virulence in the...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:311410 |
Date | January 2011 |
Creators | Goldová, Jana |
Contributors | Branny, Pavel, Nešvera, Jan, Španová, Alena |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0019 seconds