This thesis aims to assist in the development of machine learning models tailored for stress testing. The main objective is to create models that can predict loan defaults while considering the impact of macroeconomic stress. By achieving this, Nordea can continue the development of machine learning models for stress testing by utilizing the models as a basis for further advancement. The research begins with an analysis of historical loan data, encompassing diverse customer and macroeconomic variables that influence loan default rates. Leveraging machine learning algorithms, feature selection methods, data imbalance management and model training techniques, a set of predictive models is constructed. These models aim to capture the intricate relationships between the identified variables and loan defaults, ensuring their suitability for stress testing purposes. The subsequent phase of the research focuses on subjecting the developed models to simulated adverse economic conditions during stress testing. By evaluating the models’ performance under various stressed scenarios, their ability to provide predictions is assessed. This stress testing process allows us to analyse the models’ capabilities of incorporating a stressed scenario in their predictions. The thesis concludes with an evaluation of the developed machine learning models and their abilities to identify defaulted loans in a stressed macroeconomy. By creating these models specifically tailored for stress testing loans, we will provide a basis for further development within the area of stress testing modeling. / Denna uppsats syftar till att bidra till utvecklingen av maskininlärningsmodeller lämpade för stress testing. Det främsta målet är att skapa modeller som kan förutsäga lån som kommer att misslyckas samtidigt som de beaktar påverkan av makroekonomisk stress. Genom att uppnå detta kan Nordea fortsätta utvecklingen av maskininlärningsmodeller för stress testning genom att använda modellerna som grund för ytterligare utveckling. Arbetet inleds med en analys av historisk lånedata, som omfattar olika kund- och makroekonomiska variabler som påverkar lån. Genom att använda oss av maskininlärningsalgoritmer, metoder för urval av förklarande variabler, hantering av dataobalans och tekniker för modellträning konstrueras en uppsättning prediktiva modeller. Dessa modeller syftar till att fånga de komplexa relationerna mellan de identifierade variablerna och låneavvikelser och säkerställa deras lämplighet för stress testning. Den efterföljande fasen av arbetet fokuserar på att utsätta de utvecklade modellerna för simulerade stressade ekonomiska förhållanden. Genom att utvärdera modellernas prestanda under olika stressade förhållanden bedöms deras förmåga att prediktera uteblivna lån. Denna process för stress testning gör det möjligt för oss att analysera modellernas förmåga att inkludera stressade förhållanden i sina prediktioner. Uppsatsen avslutas med en utvärdering av de utvecklade maskininlärningsmodellerna och deras förmåga att identifiera uteblivna lån i en stressad makroekonomi. Genom att skapa dessa modeller specifikt anpassade för stresstestning av lån kommer vi att ge en grund för ytterligare utveckling inom området.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-209404 |
Date | January 2023 |
Creators | Andersson, Tobias, Mentes, Mattias |
Publisher | Umeå universitet, Institutionen för matematik och matematisk statistik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0026 seconds